
Dr. Umayal Ramanathan College for Women, Karaikudi.

(Accredited with ‘B+’ Grade by NAAC)

Affiliated to Alagappa University

(Run by Alagappa Chettiar Educational Trust)

Study Material

2020-2021

Subject Name: Programming in C

Subject Code: 7BCE1C1

Name of the Staff: Ms. G. Divya

Department: Computer Science

Course Outcome:

Semester Course Title Course

Code

Course Outcome

I Programming in C 7BCE1C1 CO1 To introduce the field of programming

using C language. Usage of Arithmetic

operator, Conditional operator, logical

operator and relational operators and

other C constructs.

CO2 Compare and contrast of the decision

making, branching and looping

constructs data flow diagram with

examples.

CO3 Understand the concepts of one

dimensional and two dimensional

arrays.

CO4 Implement different operations on User

defined functions, structures and

unions.

CO5 Determine the address of variable as

pointers and files.

B.Sc., COMPUTER SCIENCE

I YEAR – I SEMESTER

COURSE CODE: 7BCE1C1

CORE COURSE-I–PROGRAMMING IN C

 Unit I

Overview of C: History of C – Importance of C – Basic Structure of C Programs –Programming Style –

Character Set – C Tokens – Keywords and Identifiers – Constants, Variables and Data Types –

Declaration of Variables – Defining Symbolic Constants –Declaring a variable as a constant – overflow

and underflow of data – Operators and Expressions: Arithmetic, relational, logical, assignment operators

– increment and decrement operators, conditional operators, bitwise operators, special operators –

Arithmetic Expressions- Evaluation of Expressions – Precedence of Arithmetic Operators – Type

Conversions in Expressions – Operator Precedence and Associativity – Mathematical functions.

Unit II

Managing I/O Operations: Reading and Writing a Character – Formatted Input, Output – Decision

Making & Branching: if statement - if else statement - nesting of if else statements - else if ladder

– switch statement – the ?: operator – goto statement – the while statement – do statement – the for

statement – jumps in loops.

Unit III

Arrays: One-Dimensional Arrays – Declaration, Initialization – Two-Dimensional Arrays – Multi-

dimensional Arrays – Dynamic Arrays – Initialization. Strings: Declaration, Initialization of string

variables – reading and writing strings – string handling functions.

Unit IV

User-defined functions: need – multi-function programs – elements of user definedfunctions – definition

– return values and their types – function calls, declaration, category –all types of arguments and return

values – nesting of functions – recursion – passing arrays,strings to functions – scope visibility and life

time of variables. Structures and Unions:Defining a structure – declaring a structure variable – accessing

structure members –initialization – copying and comparing – operation on individual members – array

of structures – arrays within structures – structures within structures – structures and functions –unions

– size of structures – bit fields.

Unit V

Pointers: the address of a variable – declaring, initialization of pointer variables –accessing a variable

through its pointer – chain of pointers – pointer increments and scale factors – pointers and character

strings – pointers as function arguments – pointers and structures. Files: Defining, opening, closing a

file – IO Operations on files – Error handling during IO operations – command line arguments.

Text Book:

1. Programming in ANSI C, E.Balagurusamy, 6th Edition, Tata McGraw Hill Publishing Company,

2012.

UNIT I: Chapters 1 (Except 1.3-1.7, 1.10-1.12), 2 (Except 2.9, 2.13), 3(Except 3.13)

UNIT II: Chapters 4 – 6

UNIT III: Chapters 7, 8 (Except 8.5, 8.6, 8.7, 8.9, 8.10)

UNIT IV: Chapters 9 (Except 9.20), 10

UNIT V: Chapters 11 (Except 11.8, 11.10, 11.12, 11.14, 11.15, 11.17), 12(Except 12.6)

Books for Reference:

1. Programming with C, Schaum’s Outline Series, Gottfried, Tata McGraw Hill, 2006

2. Programming with ANSI and Turbo C , Ashok N.Kamthane , Pearson Education, 2006

3. H. Schildt, C: The Complete Reference, 4th Edition, TMH Edition, 2000.

4. Kanetkar Y., Let us C, BPB Pub., New Delhi, 1999.

Programming in C

Unit I

Learning Objectives

1. To familiarize with fundamentals of C language

2. To understand the structure of C program

3. To develop algorithm/flowcharts

4. To know applications of C language

5. To identify the different types of operators

Mind Map

Summary

C is a general-purpose, high-level language. C language is mainly used for develop desktop based

application. All other programming languages were derived directly or indirectly from C programming

concepts. C is often called a middle-level computer language. C language is very often known as a

System Programming Language, because it is used for writing assemblers, compilers, editors and even

operating systems. C language is used in wide variety of applications. Practical applications of C

language are several, right form writing the operating systems like UNIX, Windows to creating antivirus

programs. It was originally developed for the UNIX operating system.

Introduction to C:

Overview of C:

Computer programming (often shortened to programming) is a process that leads

from an original formulation of a computing problem to executable computer programs.

Programming involves activities such as analysis, developing understanding, generating

algorithms, verification of requirements of algorithms including their correctness and resources

consumption, and implementation (commonly referred to as coding of algorithms in a target

programming language. Source code is written in one or more programming languages.

The purpose of programming is to find a sequence of instructions that will automate performing

a specific task or solving a given problem. The process of programming thus often requires

expertise in many different subjects, including knowledge of the application domain,

specialized algorithms and formal logic.

History of C:

C was written in 1972 by Dennis Ritchie at Bell Laboratories and it was used to

implement UNIX on the Dec PDP-11, with 94% of its operating system written in C.

C belongs to the class of procedural languages (also known as prescriptive or imperative

languages, as opposed to non-procedural/descriptive/declarative languages). Some other well-

known procedural languages include COBOL1, Fortran2 and Pascal. Programs of procedural

languages tell the computer how to solve a problem; programs of non-procedural languages,

like Smalltalk, specify what is to be solved. Many languages are a mix. For example, Prolog3

is one, though it is considered as largely non-procedural.

C is generally treated as a high-level programming language. However, strictly

speaking, it is part high-level and part low-level. Hence, it is actually a low-level language

among the high-level ones.

Importance of C:

C is compact. Its core is small, but it is supplemented by a large set of systems calls

and libraries, such as stdio.h, math.h, etc. The ANSI standard for C requires that certain

standard libraries be provided in every ANSI C implementation.

C is expressive, portable and efficient. Coupled with its compactness, it is an excellent

language for systems programming, time-critical functions, and applications involving close

interaction with the operating system or hardware.

On the down side, C has a complicated syntax, which makes it appear confusing at first

glance. As it accords the programmer a great deal of flexibility, maturity and discipline are

demanded of the programmer. These are real obstacles to beginners. In short, C is baffling

to look at, easy to mess up, and tricky to learn.

• Easy to learn

• Structured language

• It produces efficient programs.

• It can handle low-level activities.

• It can be compiled on a variety of computers.

Basic Structure of C:

The structure of c is:

/*comments*/

Header files;

main()

{

Block of statements;

}

C Hello World Example

A C program basically consists of the following parts:

• Preprocessor Commands

• Functions

• Variables

• Statements & Expressions

• Comments

Let us look at a simple code that would print the words "Hello World":

#include <stdio.h>

int main()

{

/* my first program in C */
printf("Hello, World! \n");

return 0;

}

Let us look various parts of the above program:

1. The first line of the program #include <stdio.h> is a preprocessor command, which tells

a C compiler to include stdio.h file before going to actual compilation.

2. The next line int main() is the main function where program execution begins.

3. The next line /*...*/ will be ignored by the compiler and it has been put to add additional

comments in the program. So such lines are called comments in the program.

4. The next line printf(...) is another function available in C which causes the message

"Hello, World!" to be displayed on the screen.

5. The next line return 0; terminates main()function and returns the value 0.

Compile & Execute C Program:

Lets look at how to save the source code in a file, and how to compile and run it. Following are

the simple steps:

1. Open a text editor and add the above-mentioned code.

2. Save the file as hello.c

3. Open a command prompt and go to the directory where you saved the file.

4. Type gcc hello.c and press enter to compile your code.

5. If there are no errors in your code the command prompt will take you to the next line

and would generate a.out executable file.
6. Now, type a.out to execute your program.

7. You will be able to see "Hello World" printed on the screen

$ gcc hello.c

$./a.out
Hello, World!

Programming Style:
Header file:

A header file is a file with extension .h which contains C function declarations and macro

definitions and to be shared between several source files. There are two types of header files:

the files that the programmer writes and the files that come with your compiler.

You request the use of a header file in your program by including it, with the C preprocessing

directive #include like you have seen inclusion of stdio.h header file, which comes along with

your compiler.

Including a header file is equal to copying the content of the header file but we do not do it

because it will be very much error-prone and it is not a good idea to copy the content of header

file in the source files, specially if we have multiple source file comprising our program.

A simple practice in C or C++ programs is that we keep all the constants, macros, system wide

global variables, and function prototypes in header files and include that header file wherever

it is required.

Include Syntax

Both user and system header files are included using the preprocessing directive #include. It

has following two forms:

#include <file>

This form is used for system header files. It searches for a file named file in a standard list of

system directories. You can prepend directories to this list with the -I option while compiling

your source code.

#include "file"

This form is used for header files of your own program. It searches for a file named file in the

directory containing the current file. You can prepend directories to this list with the -I option

while compiling your source code.

Include Operation

The #include directive works by directing the C preprocessor to scan the specified file as input

before continuing with the rest of the current source file. The output from the preprocessor

contains the output already generated, followed by the output resulting from the included file,

followed by the output that comes from the text after the #include directive. For example, if

you have a header file header.h as follows:

char *test (void);

and a main program called program.c that uses the header file, like this:

int x;

#include "header.h"

int main (void)

{
puts (test ());

}

the compiler will see the same token stream as it would if program.c read

int x;

char *test (void);

int main (void)

{

puts (test ());}

Once-Only Headers

If a header file happens to be included twice, the compiler will process its contents twice and

will result an error. The standard way to prevent this is to enclose the entire real contents of the

file in a conditional, like this:

#ifndef HEADER_FILE

#define HEADER_FILE

the entire header file file

#endif

This construct is commonly known as a wrapper #ifndef. When the header is included again,

the conditional will be false, because HEADER_FILE is defined. The preprocessor will skip

over the entire contents of the file, and the compiler will not see it twice.

Basic Syntax:

Tokens in C

A C program consists of various tokens and a token is either a keyword, an identifier, a constant,

a string literal, or a symbol. For example, the following C statement consists of five tokens:

printf("Hello, World! \n");

The individual tokens are:

printf

(

"Hello, World! \n"

)

;

Semicolons ;

In C program, the semicolon is a statement terminator. That is, each individual statement must

be ended with a semicolon. It indicates the end of one logical entity.

For example, following are two different statements:

printf("Hello, World! \n");

return 0;

Comments

Comments are like helping text in your C program and they are ignored by the compiler. They

start with /* and terminates with the characters */ as shown below:

/* my first program in C */

You cannot have comments within comments and they do not occur within a string or character

literals.

Identifiers

A C identifier is a name used to identify a variable, function, or any other user-defined item. An

identifier starts with a letter A to Z or a to z or an underscore _ followed by zero or more letters,

underscores, and digits (0 to 9).

C does not allow punctuation characters such as @, $, and % within identifiers. C is a case

sensitive programming language. Thus, Manpower and manpower are two different identifiers

in C. Here are some examples of acceptable identifiers:

mohd zara abc move_name a_123

myname50 _temp j a23b9 retVal

Keywords

The following list shows the reserved words in C. These reserved words may not be used as

constant or variable or any other identifier names.

auto else long switch

break enum register typedef

case extern return union

char float short unsigned

const for signed void

continue goto sizeof volatile

default if static while

do int struct _Packed

double

Whitespace in C

A line containing only whitespace, possibly with a comment, is known as a blank line, and a C

compiler totally ignores it.

Whitespace is the term used in C to describe blanks, tabs, newline characters and comments.

Whitespace separates one part of a statement from another and enables the compiler to identify

where one element in a statement, such as int, ends and the next element begins. Therefore, in

the following statement:

int age;

There must be at least one whitespace character (usually a space) between int and age for the

compiler to be able to distinguish them. On the other hand, in the following statement:

fruit = apples + oranges; // get the total fruit

No whitespace characters are necessary between fruit and =, or between = and apples, although

you are free to include some if you wish for readability purpose.

Data Types & Variables:

DataTypes:

In the C programming language, data types refer to an extensive system used for declaring

variables or functions of different types. The type of a variable determines how much space it

occupies in storage and how the bit pattern stored is interpreted.

The types in C can be classified as follows:

S.N. Types and Description

1 Basic Types:

They are arithmetic types and consists of the two types: (a) integer types and (b)

floating-point types.

2 Enumerated types:

They are again arithmetic types and they are used to define variables that can only

be assigned certain discrete integer values throughout the program.

3 The type void:

The type specifier void indicates that no value is available.

4 Derived types:

They include (a) Pointer types, (b) Array types, (c) Structure types, (d) Union types

and (e) Function types.

The array types and structure types are referred to collectively as the aggregate types. The type

of a function specifies the type of the function's return value. We will see basic types in the

following section, whereas, other types will be covered in the upcoming chapters.

Integer Types

Following table gives you details about standard integer types with its storage sizes and value

ranges:

Type Storage size Value range

char 1 byte -128 to 127 or 0 to 255

unsigned char 1 byte 0 to 255

Storage size for int : 4

signed char 1 byte -128 to 127

int 2 or 4 bytes -32,768 to 32,767 or -2,147,483,648 to 2,147,483,647

unsigned int 2 or 4 bytes 0 to 65,535 or 0 to 4,294,967,295

short 2 bytes -32,768 to 32,767

unsigned short 2 bytes 0 to 65,535

long 4 bytes -2,147,483,648 to 2,147,483,647

unsigned long 4 bytes 0 to 4,294,967,295

To get the exact size of a type or a variable on a particular platform, you can use

the sizeofoperator. The expressions sizeof(type) yields the storage size of the object or type in

bytes. Following is an example to get the size of int type on any machine:

#include <stdio.h>

#include <limits.h>

int main(){

printf("Storage size for int : %d \n", sizeof(int));

return 0;}

When you compile and execute the above program it produces the following result on Linux:

Floating-Point Types

Following table gives you details about standard floating-point types with storage sizes and

value ranges and their precision:

Type Storage size Value range Precision

float 4 byte 1.2E-38 to 3.4E+38 6 decimal places

double 8 byte 2.3E-308 to 1.7E+308 15 decimal places

long double 10 byte 3.4E-4932 to 1.1E+4932 19 decimal places

The header file float.h defines macros that allow you to use these values and other details about

theBINARY representation of real numbers in your programs. Following example will print

storage space taken by a float type and its range values:

#include <stdio.h>

#include <float.h>

int main()

{

printf("Storage size for float : %d \n", sizeof(float));

printf("Minimum float positive value: %E\n", FLT_MIN);

printf("Maximum float positive value: %E\n", FLT_MAX);

printf("Precision value: %d\n", FLT_DIG);

return 0;

}

Output:

Storage size for float : 4

Minimum float positive value: 1.175494E-38

Maximum float positive value: 3.402823E+38

Precision value: 6

The void Type

The void type specifies that no value is available. It is used in three kinds of situations:

S.N. Types and Description

1 Function returns as void

There are various functions in C which do not return value or you can say they return

void. A function with no return value has the return type as void. For example void

exit (int status);

2 Function arguments as void

There are various functions in C which do not accept any parameter. A function with

no parameter can accept as a void. For example, int rand(void);

3 Pointers to void

http://www.tutorialspoint.com/#1019085

A pointer of type void * represents the address of an object, but not its type. For

example a memory allocation function void *malloc(size_t size); returns a pointer

to void which can be casted to any data type.

The void type may not be understood to you at this point, so let us proceed and we will cover

these concepts in the upcoming chapters.

Variables:

A variable definition means to tell the compiler where and how much to create the storage for

the variable. A variable definition specifies a data type and contains a list of one or more

variables of that type as follows:

type variable_list;

Here, type must be a valid C data type including char, w_char, int, float, double, bool or any

user-defined object, etc., and variable_list may consist of one or more identifier names

separated by commas. Some valid declarations are shown here:

int i, j, k;

char c, ch;

float f, salary;

double d;

The line int i, j, k; both declares and defines the variables i, j and k; which instructs the compiler

to create variables named i, j and k of type int.

Variables can be initialized (assigned an initial value) in their declaration. The initializer

consists of an equal sign followed by a constant expression as follows:

type variable_name = value;

Some examples are:

extern int d = 3, f = 5; // declaration of d and f.

int d = 3, f = 5; // definition and initializing d and f.

byte z = 22; // definition and initializes z.

char x = 'x'; // the variable x has the value 'x'.

Constant:

Constants can be of any of the basic data types like an integer constant, a floating constant, a

character constant, or a string literal. There are also enumeration constants as well.

The constants are treated just like regular variables except that their values cannot be modified

after their definition.

Integer literals

An integer literal can be a decimal, octal, or hexadecimal constant. A prefix specifies the base

or radix: 0x or 0X for hexadecimal, 0 for octal, and nothing for decimal.

An integer literal can also have a suffix that is a combination of U and L, for unsigned and long,

respectively. The suffix can be uppercase or lowercase and can be in any order.

Here are some examples of integer literals:

212 /* Legal */

215u /* Legal */

0xFeeL /* Legal */

078 /* Illegal: 8 is not an octal digit */

032UU /* Illegal: cannot repeat a suffix */

Following are other examples of various type of Integer literals:

85 /* decimal */

0213 /* octal */

0x4b /* hexadecimal */

30 /* int */

30u /* unsigned int */

30l /* long */

30ul /* unsigned long */

Floating-point literals

A floating-point literal has an integer part, a decimal point, a fractional part, and an exponent

part. You can represent floating point literals either in decimal form or exponential form.

While representing using decimal form, you must include the decimal point, the exponent, or

both and while representing using exponential form, you must include the integer part, the

fractional part, or both. The signed exponent is introduced by e or E.

Here are some examples of floating-point literals:

3.14159 /* Legal */

314159E-5L /* Legal */

510E /* Illegal: incomplete exponent */

210f /* Illegal: no decimal or exponent */

.e55 /* Illegal: missing integer or fraction */

Character constants

Character literals are enclosed in single quotes, e.g., 'x' and can be stored in a simple variable

of char type.

A character literal can be a plain character (e.g., 'x'), an escape sequence (e.g., '\t'), or a universal

character (e.g., '\u02C0').

There are certain characters in C when they are preceded by a backslash they will have special

meaning and they are used to represent like newline (\n) or tab (\t). Here, you have a list of some

of such escape sequence codes:

Escape sequence Meaning

\\ \ character

\' ' character

\" " character

\? ? character

\a Alert or bell

\b Backspace

\f Form feed

\n Newline

\r Carriage return

\t Horizontal tab

\v Vertical tab

\ooo Octal number of one to three digits

\xhh . . . Hexadecimal number of one or more digits

Following is the example to show few escape sequence characters:

#include <stdio.h>

int main()

{
printf("Hello\tWorld\n\n");

return 0;

}

When the above code is compiled and executed, it produces the following result:

Hello World

String literals

String literals or constants are enclosed in double quotes "". A string contains characters that

are similar to character literals: plain characters, escape sequences, and universal characters.

You can break a long line into multiple lines using string literals and separating them using

whitespaces.

Here are some examples of string literals. All the three forms are identical strings.

"hello, dear"

"hello, \

dear"

"hello, " "d" "ear"

Defining Constants

There are two simple ways in C to define constants:

1. Using #define preprocessor.

2. Using const keyword.

The #define Preprocessor

Following is the form to use #define preprocessor to define a constant:

#define identifier value

Following example explains it in detail:

#include <stdio.h>

#define LENGTH 10

#define WIDTH 5

#define NEWLINE '\n'

int main()

{

int area;

area = LENGTH * WIDTH;

printf("value of area : %d", area);

printf("%c", NEWLINE);

return 0;

}

When the above code is compiled and executed, it produces the following result:

value of area : 50

The const Keyword

You can use const prefix to declare constants with a specific type as follows:

const type variable = value;

Following example explains it in detail:

#include <stdio.h>

int main()

{

const int LENGTH = 10;

const int WIDTH = 5;

const char NEWLINE = '\n';

int area;

area = LENGTH * WIDTH;

printf("value of area : %d", area);

printf("%c", NEWLINE);

return 0;

}

When the above code is compiled and executed, it produces the following result:

value of area : 50

Storage class:

A storage class defines the scope (visibility) and life-time of variables and/or functions within

a C Program. These specifiers precede the type that they modify. There are the following storage

classes, which can be used in a C Program

• auto

• register

• static

• extern

The auto Storage Class

The auto storage class is the default storage class for all local variables.

{

int mount;
auto int month;

}

The example above defines two variables with the same storage class, auto can only be used

within functions, i.e., local variables.

The register Storage Class

The register storage class is used to define local variables that should be stored in a register

instead of RAM. This means that the variable has a maximum size equal to the register size

(usually one word) and can't have the unary '&' operator applied to it (as it does not have a

memory location).

{

register int miles;

}

The register should only be used for variables that require quick access such as counters. It

should also be noted that defining 'register' does not mean that the variable will be stored in a

register. It means that it MIGHT be stored in a register depending on hardware and

implementation restrictions.

The static Storage Class

The static storage class instructs the compiler to keep a local variable in existence during the

life-time of the program instead of creating and destroying it each time it comes into and goes

out of scope. Therefore, making local variables static allows them to maintain their values

between function calls.

The static modifier may also be applied to global variables. When this is done, it causes that

variable's scope to be restricted to the file in which it is declared.

In C programming, when static is used on a class data member, it causes only one copy of that

member to be shared by all objects of its class.

#include <stdio.h>

/* function declaration */

void func(void);

static int count = 5; /* global variable */

main()

{
while(count--)

{
func();

}

return 0;

}

/* function definition */

void func(void)
{

static int i = 5; /* local static variable */

i++;

printf("i is %d and count is %d\n", i, count);

}

You may not understand this example at this time because I have used function and global

variables, which I have not explained so far. So for now let us proceed even if you do not

understand it completely. When the above code is compiled and executed, it produces the

following result:

i is 6 and count is 4

i is 7 and count is 3

i is 8 and count is 2

i is 9 and count is 1

i is 10 and count is 0

The extern Storage Class

The extern storage class is used to give a reference of a global variable that is visible to ALL

the program files. When you use 'extern', the variable cannot be initialized as all it does is point

the variable name at a storage location that has been previously defined.

When you have multiple files and you define a global variable or function, which will be used

in other files also, then extern will be used in another file to give reference of defined variable

or function. Just for understanding, extern is used to declare a global variable or function in

another file.

The extern modifier is most commonly used when there are two or more files sharing the same

global variables or functions as explained below.

First File: main.c

#include <stdio.h>

int count ;

extern void write_extern();

main()

{

count = 5;

write_extern();
}

Second File: support.c

#include <stdio.h>

extern int count;

void write_extern(void)

{

printf("count is %d\n", count);

}

Here, extern keyword is being used to declare count in the second file where as it has its

definition in the first file, main.c. Now, compile these two files as follows:

$gcc main.c support.c

This will produce a.out executable program, when this program is executed, it produces the

following result:

5

Operators:

Simple answer can be given using expression 4 + 5 is equal to 9. Here 4 and 5 are called

operands and + is called operator. C language supports following type of operators.

• Arithmetic Operators

• Logical (or Relational) Operators

• Bitwise Operators

• Assignment Operators

• Misc Operators

Lets have a look on all operators one by one.

Arithmetic Operators:

There are following arithmetic operators supported by C language:

Assume variable A holds 10 and variable B holds 20 then:

Operator Description Example

+ Adds two operands A + B will give 30

- Subtracts second operand from the first A - B will give -10

* Multiply both operands A * B will give 200

/ Divide numerator by denumerator B / A will give 2

% Modulus Operator and remainder of

after an integer division

B % A will give 0

++ Increment operator, increases integer

value by one

A++ will give 11

-- Decrement operator, decreases integer

value by one

A-- will give 9

Logical (or Relational) Operators:

There are following logical operators supported by C language

Assume variable A holds 10 and variable B holds 20 then:

Operator Description Example

== Checks if the value of two operands is

equal or not, if yes then condition

becomes true.

(A == B) is not true.

!= Checks if the value of two operands is

equal or not, if values are not equal then

condition becomes true.

(A != B) is true.

> Checks if the value of left operand is

greater than the value of right operand,

if yes then condition becomes true.

(A > B) is not true.

< Checks if the value of left operand is

less than the value of right operand, if

yes then condition becomes true.

(A < B) is true.

>= Checks if the value of left operand is

greater than or equal to the value of

right operand, if yes then condition

becomes true.

(A >= B) is not true.

<= Checks if the value of left operand is

less than or equal to the value of right

operand, if yes then condition becomes

true.

(A <= B) is true.

&& Called Logical AND operator. If both

the operands are non zero then then

condition becomes true.

(A && B) is true.

|| Called Logical OR Operator. If any of

the two operands is non zero then then

condition becomes true.

(A || B) is true.

! Called Logical NOT Operator. Use to

reverses the logical state of its operand.

If a condition is true then Logical NOT

operator will make false.

!(A && B) is false.

Bitwise Operators:

Bitwise operator works on bits and perform bit by bit operation.

Assume if A = 60; and B = 13; Now in binary format they will be as follows:

A = 0011 1100

B = 0000 1101

A&B = 0000 1100

A|B = 0011 1101

A^B = 0011 0001

~A = 1100 0011

There are following Bitwise operators supported by C language

Operator Description Example

& Binary AND Operator copies a bit to

the result if it exists in both operands.

(A & B) will give 12 which is 0000

1100

| Binary OR Operator copies a bit if it

exists in eather operand.

(A | B) will give 61 which is 0011 1101

^ Binary XOR Operator copies the bit if

it is set in one operand but not both.

(A ̂ B) will give 49 which is 0011 0001

~ Binary Ones Complement Operator is
unary and has the efect of 'flipping' bits.

(~A) will give -60 which is 1100 0011

<< Binary Left Shift Operator. The left

operands value is moved left by the

number of bits specified by the right

operand.

A << 2 will give 240 which is 1111

0000

>> Binary Right Shift Operator. The left

operands value is moved right by the

number of bits specified by the right

operand.

A >> 2 will give 15 which is 0000 1111

Assignment Operators:

There are following assignment operators supported by C language:

Operator Description Example

= Simple assignment operator,

Assigns values from right side

operands to left side operand

C = A + B will assigne value of A + B into

C

+= Add AND assignment operator, It

adds right operand to the left

operand and assign the result to left

operand

C += A is equivalent to C = C + A

-= Subtract AND assignment

operator, It subtracts right operand

from the left operand and assign

the result to left operand

C -= A is equivalent to C = C - A

*= Multiply AND assignment

operator, It multiplies right

operand with the left operand and

assign the result to left operand

C *= A is equivalent to C = C * A

/= Divide AND assignment operator,

It divides left operand with the

right operand and assign the result

to left operand

C /= A is equivalent to C = C / A

%= Modulus AND assignment

operator, It takes modulus using

two operands and assign the result

to left operand

C %= A is equivalent to C = C % A

<<= Left shift AND assignment

operator

C <<= 2 is same as C = C << 2

>>= Right shift AND assignment

operator

C >>= 2 is same as C = C >> 2

&= Bitwise AND assignment operator C &= 2 is same as C = C & 2

^= bitwise exclusive OR and

assignment operator

C ^= 2 is same as C = C ^ 2

|= bitwise inclusive OR and

assignment operator

C |= 2 is same as C = C | 2

Short Notes on L-VALUE and R-VALUE:

x = 1; takes the value on the right (e.g. 1) and puts it in the memory referenced by x. Here x and

1 are known as L-VALUES and R-VALUES respectively L-values can be on either side of the

assignment operator where as R-values only appear on the right.

So x is an L-value because it can appear on the left as we've just seen, or on the right like this:

y = x; However, constants like 1 are R-values because 1 could appear on the right, but 1 = x; is

invalid.

Misc Operators

There are few other operators supported by C Language.

Operator Description Example

sizeof() Returns the size of an variable. sizeof(a), where a is interger, will return 4.

& Returns the address of an variable. &a; will give actaul address of the variable.

* Pointer to a variable. *a; will pointer to a variable.

? : Conditional Expression If Condition is true ? Then value X :

Otherwise value Y

Operators Categories:

All the operators we have discussed above can be categorised into following categories:

• Postfix operators, which follow a single operand.

• Unary prefix operators, which precede a single operand.

• BINARY operators, which take two operands and perform a variety of arithmetic and

logical operations.

• The conditional operator (a ternary operator), which takes three operands and evaluates

either the second or third expression, depending on the evaluation of the first expression.
• Assignment operators, which assign a value to a variable.

• The comma operator, which guarantees left-to-right evaluation of comma-separated

expressions.

Precedence of C Operators:

Operator precedence determines the grouping of terms in an expression. This affects how an

expression is evaluated. Certain operators have higher precedence than others; for example, the

multiplication operator has higher precedence than the addition operator:

For example x = 7 + 3 * 2; Here x is assigned 13, not 20 because operator * has higher

precedenace than + so it first get multiplied with 3*2 and then adds into 7.

Here operators with the highest precedence appear at the top of the table, those with the lowest

appear at the bottom. Within an expression, higher precedenace operators will be evaluated first.

Category Operator Associativity

Postfix () [] -> . ++ - - Left to right

Unary + - ! ~ ++ - - (type) * & sizeof Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Shift << >> Left to right

Relational < <= > >= Left to right

Equality == != Left to right

Bitwise AND & Left to right

Bitwise XOR ^ Left to right

Bitwise OR | Left to right

Logical AND && Left to right

Logical OR || Left to right

Conditional ?: Right to left

Assignment = += -= *= /= %= >>= <<= &= ^= |= Right to left

Comma , Left to right

Questions

http://www.tutorialspoint.com/#40255705

1. What are different data types in C?

2. What do you mean by Variable?

3. What are the applications of C programming?

4. Write the basic structure of C PROGRAM?

5. Write a C program print the text “Hello World”.

Unit II

Learning Objective

1. To know how to manage I/O statements

2. To know the looping concepts

3. To develop program in decision making statements

4. To know jump in loops

Mind Map

Summary

➢ Input/output functions are used to accept values into variables and printing them after
the processing

➢ By using getchar() function reading a single character representing the following
manner variable-name=getchar().

➢ In putchar() function it is used to display a character by character.

➢ It receives a single character to a standard output devices is called monitor.

➢ In C library function scanf() it is one of the input function. Just like the getchar()
function. The scanf() function reads information from the terminal stores with the

particular variable. The formatted data output function can be used to show the output

any combination of numerical values such as character and string.

Managing I/O Operations:

Output Statement:

The function printf() is used for formatted output to standard output based on a format

specification. The format specification string, along with the data to be output, are the

parameters to the printf() function.

Syntax:

printf (format, data1, data2,);

In this syntax format is the format specification string. This string contains, for each variable to

be output, a specification beginning with the symbol % followed by a character called the

conversion character.

Example:

printf (“%c”, data1);

The character specified after % is called a conversion character because it allows one data type

to be converted to another type and printed.

See the following table conversion character and their meanings.

Conversion

Character

Meaning

d The data is converted to decimal (integer)

c The data is taken as a character.

s The data is a string and character from the string , are printed until a NULL,

character is reached.

f The data is output as float or double with a default Precision 6.

Symbols Meaning

\n For new line (linefeed return)

\t For tab space (equivalent of 8 spaces)

Example

printf(“%c\n”,data1);

The format specification string may also have text.

Example

printf (“Character is:”%c\n”, data1);

The text "Character is:" is printed out along with the value of data1.

Example with program

#include<stdio.h>

#include<conio.h>

main()

{

char alphabh="a";

int number1= 55;

float number2=22.34;

printf(“char= %c\n”,alphabh);

printf(“int= %d\n”,number1);

printf(“float= %f\n”,number2);

getch();

clrscr();

retrun 0;

}

Output :

char =a

int= 55

flaot=22.340000

Input Statement:

The function scanf() is used for formatted input from standard input and provides many of the

conversion facilities of the function printf().

Syntax

scanf (format, num1, num2,……);

The function scnaf() reads and converts characters from the standards input depending on the

format specification string and stores the input in memory locations represented by the other

arguments (num1, num2,….).

For Example:

scanf(“ %c %d”,&Name, &Roll No);

Note: the data names are listed as &Name and &Roll No instead of Name and Roll No

respectively. This is how data names are specified in a scnaf() function. In case of string type

data names, the data name is not preceded by the character &.

Example with program

Write a function to accept and display the element number and the weight of a proton. The

element number is an integer and weight is fractional.

Solve here:
#include<stdio.h>

#include<conio.h>

main()

{

Int e_num;

Float e_wt;

printf (“Enter the Element No. and Weight of a Proton\n”);

scanf (“%d %f”,&e_num, &e_wt);

printf (“The Element No.is:”,e_num);

printf (“The Weight of a Proton is: %f\n”, e_wt);

getch();

return 0;

}

Control Statement:

Decision making and branching statements:

Decision making structures require that the programmer specify one or more conditions to be

evaluated or tested by the program, along with a statement or statements to be executed if the

condition is determined to be true, and optionally, other statements to be executed if the

condition is determined to be false.

Following is the general form of a typical decision making structure found in most of the

programming languages:

Exp1 ? Exp2 : Exp3;

C programming language assumes any non-zero and non-null values as true, and if it is

either zero or null, then it is assumed as false value.

C programming language provides following types of decision making statements. Click the

following links to check their detail.

Statement Description

if statement An if statement consists of a boolean expression followed

by one or more statements.

if...else statement An if statement can be followed by an optional else

statement, which executes when the boolean expression is

false.

nested if statements You can use one if or else if statement inside

another ifor else if statement(s).

switch statement A switch statement allows a variable to be tested for

equality against a list of values.

nested switch statements You can use one switch statement inside

another switchstatement(s).

The ? : Operator:

We have covered conditional operator ? : in previous chapter which can be used to

replace if...else statements. It has the following general form:

Where Exp1, Exp2, and Exp3 are expressions. Notice the use and placement of the colon.

The value of a ? expression is determined like this: Exp1 is evaluated. If it is true, then Exp2

is evaluated and becomes the value of the entire ? expression. If Exp1 is false, then Exp3 is

evaluated and its value becomes the value of the expression.

If statement:

An if statement consists of a boolean expression followed by one or more statements.

Syntax:

The syntax of an if statement in C programming language is:

if(boolean_expression)

{

http://www.tutorialspoint.com/cprogramming/if_statement_in_c.htm
http://www.tutorialspoint.com/cprogramming/if_else_statement_in_c.htm
http://www.tutorialspoint.com/cprogramming/nested_if_statements_in_c.htm
http://www.tutorialspoint.com/cprogramming/switch_statement_in_c.htm
http://www.tutorialspoint.com/cprogramming/nested_switch_statements_in_c.htm

/* statement(s) will execute if the boolean expression is true */

}

If the boolean expression evaluates to true, then the block of code inside the if statement will

be executed. If boolean expression evaluates to false, then the first set of code after the end of

the if statement(after the closing curly brace) will be executed.

C programming language assumes any non-zero and non-null values as true and if it is either

zero or null, then it is assumed as false value.

Flow Diagram:

Example:

#include <stdio.h>

int main ()

{
/* local variable definition */
int a = 10;

/* check the boolean condition using if statement */

if(a < 20)
{

/* if condition is true then print the following */
printf("a is less than 20\n");

}
printf("value of a is : %d\n", a);

return 0;

}

When the above code is compiled and executed, it produces the following result:

a is less than 20;

value of a is : 10

If…Else statement:

An if statement can be followed by an optional else statement, which executes when the boolean

expression is false.

Syntax:

The syntax of an if...else statement in C programming language is:

if(boolean_expression)

{
/* statement(s) will execute if the boolean expression is true */

}

else

{

/* statement(s) will execute if the boolean expression is false */

}

If the boolean expression evaluates to true, then the if block of code will be executed, otherwise

else block of code will be executed.

C programming language assumes any non-zero and non-null values as true, and if it is either

zero or null, then it is assumed as false value.

Flow Diagram:

Example:

#include <stdio.h>

int main ()

{
/* local variable definition */

int a = 100;

/* check the boolean condition */
if(a < 20)

{

/* if condition is true then print the following */

printf("a is less than 20\n");
}

else

{

/* if condition is false then print the following */

printf("a is not less than 20\n");

}
printf("value of a is : %d\n", a);

return 0;

}

When the above code is compiled and executed, it produces the following result:

a is not less than 20;

value of a is : 100

The if...else if...else Statement

An if statement can be followed by an optional else if...else statement, which is very useful to

test various conditions using single if...else if statement.

When using if , else if , else statements there are few points to keep in mind:

• An if can have zero or one else's and it must come after any else if's.

• An if can have zero to many else if's and they must come before the else.

• Once an else if succeeds, none of the remaining else if's or else's will be tested.

Syntax:

The syntax of an if...else if...else statement in C programming language is:

if(boolean_expression 1)

{
/* Executes when the boolean expression 1 is true */

}
else if(boolean_expression 2)

{
/* Executes when the boolean expression 2 is true */

}
else if(boolean_expression 3)

{
/* Executes when the boolean expression 3 is true */

}
else

{

/* executes when the none of the above condition is true */

}

Example:

#include <stdio.h>

int main ()

{

/* local variable definition */

int a = 100;

/* check the boolean condition */

if(a == 10)
{

/* if condition is true then print the following */

printf("Value of a is 10\n");
}

else if(a == 20)

{

/* if else if condition is true */

printf("Value of a is 20\n");

}
else if(a == 30)

{

/* if else if condition is true */

printf("Value of a is 30\n");
}

else

{

/* if none of the conditions is true */

printf("None of the values is matching\n");

}
printf("Exact value of a is: %d\n", a);

return 0;

}

When the above code is compiled and executed, it produces the following result:

None of the values is matching
Exact value of a is: 100

Nested If Statement:

It is always legal in C programming to nest if-else statements, which means you can use one if

or else if statement inside another if or else if statement(s).

Syntax:

The syntax for a nested if statement is as follows:

if(boolean_expression 1)

{

/* Executes when the boolean expression 1 is true */

if(boolean_expression 2)

{
/* Executes when the boolean expression 2 is true */

}

}

You can nest else if...else in the similar way as you have nested if statement.

Example:

#include <stdio.h>

int main ()

{
/* local variable definition */

int a = 100;

int b = 200;

/* check the boolean condition */

if(a == 100)

{

/* if condition is true then check the following */

if(b == 200)
{

/* if condition is true then print the following */

printf("Value of a is 100 and b is 200\n");

}

}

printf("Exact value of a is : %d\n", a);
printf("Exact value of b is : %d\n", b);

return 0;

}

When the above code is compiled and executed, it produces the following result:

Value of a is 100 and b is 200

Exact value of a is : 100

Exact value of b is : 200

Switch statements:

A switch statement allows a variable to be tested for equality against a list of values. Each value

is called a case, and the variable being switched on is checked for each switch case.

Syntax:

The syntax for a switch statement in C programming language is as follows:

switch(expression){

case constant-expression :
statement(s);

break; /* optional */
case constant-expression :

statement(s);

break; /* optional */

/* you can have any number of case statements */

default : /* Optional */
statement(s);

}

The following rules apply to a switch statement:

• The expression used in a switch statement must have an integral or enumerated type,

or be of a class type in which the class has a single conversion function to an integral or

enumerated type.

• You can have any number of case statements within a switch. Each case is followed by

the value to be compared to and a colon.

• The constant-expression for a case must be the same data type as the variable in the

switch, and it must be a constant or a literal.

• When the variable being switched on is equal to a case, the statements following that

case will execute until a break statement is reached.

• When a break statement is reached, the switch terminates, and the flow of control jumps

to the next line following the switch statement.

• Not every case needs to contain a break. If no break appears, the flow of control will

fall through to subsequent cases until a break is reached.

• A switch statement can have an optional default case, which must appear at the end of

the switch. The default case can be used for performing a task when none of the cases

is true. No break is needed in the default case.

Flow Diagram:

Example:

#include <stdio.h>

int main ()

{
/* local variable definition */

char grade = 'B';

switch(grade)

{

case 'A' :

printf("Excellent!\n");

break;
case 'B' :

case 'C' :

printf("Well done\n");

break;
case 'D' :

printf("You passed\n");
break;

case 'F' :

printf("Better try again\n");

break;
default :

printf("Invalid grade\n");

}

printf("Your grade is %c\n", grade);

return 0;

}

When the above code is compiled and executed, it produces the following result:

Well done

Your grade is B

Nested Switch satements:

It is possible to have a switch as part of the statement sequence of an outer switch. Even if the

case constants of the inner and outer switch contain common values, no conflicts will arise.

Syntax:

The syntax for a nested switch statement is as follows:

switch(ch1) {

case 'A':

printf("This A is part of outer switch");

switch(ch2) {

case 'A':

printf("This A is part of inner switch");

break;

case 'B': /* case code */
}

break;

case 'B': /* case code */

}

Example:

#include <stdio.h>

int main ()

{

/* local variable definition */

int a = 100;

int b = 200;

switch(a) {
case 100:

printf("This is part of outer switch\n", a);

switch(b) {

case 200:

printf("This is part of inner switch\n", a);

}

}

printf("Exact value of a is : %d\n", a);

printf("Exact value of b is : %d\n", b);

return 0;

}

When the above code is compiled and executed, it produces the following result:

This is part of outer switch

This is part of inner switch

Exact value of a is : 100

Exact value of b is : 200

Looping statements:

There may be a situation, when you need to execute a block of code several number of times.

In general, statements are executed sequentially: The first statement in a function is executed

first, followed by the second, and so on.

Programming languages provide various control structures that allow for more complicated

execution paths.

A loop statement allows us to execute a statement or group of statements multiple times and

following is the general form of a loop statement in most of the programming languages:

C programming language provides the following types of loop to handle looping requirements.

Click the following links to check their detail.

Loop Type Description

while loop Repeats a statement or group of statements while a given

condition is true. It tests the condition before executing the loop

body.

http://www.tutorialspoint.com/cprogramming/c_while_loop.htm

for loop Execute a sequence of statements multiple times and abbreviates

the code that manages the loop variable.

do...while loop Like a while statement, except that it tests the condition at the

end of the loop body

nested loops You can use one or more loop inside any another while, for or

do..while loop.

Loop Control Statements:

Loop control statements change execution from its normal sequence. When execution leaves

a scope, all automatic objects that were created in that scope are destroyed.

While loop:

A while loop statement in C programming language repeatedly executes a target statement as

long as a given condition is true.

Syntax:

The syntax of a while loop in C programming language is:

while(condition)

{
statement(s);

}

Here, statement(s) may be a single statement or a block of statements. The condition may be

any expression, and true is any nonzero value. The loop iterates while the condition is true.

When the condition becomes false, program control passes to the line immediately following

the loop.

Flow Diagram:

http://www.tutorialspoint.com/cprogramming/c_for_loop.htm
http://www.tutorialspoint.com/cprogramming/c_do_while_loop.htm
http://www.tutorialspoint.com/cprogramming/c_nested_loops.htm

Here, key point of the while loop is that the loop might not ever run. When the condition is

tested and the result is false, the loop body will be skipped and the first statement after the while

loop will be executed.

Example:

#include <stdio.h>

int main ()

{

/* local variable definition */

int a = 10;

/* while loop execution */

while(a < 20)

{

printf("value of a: %d\n", a);

a++;

}

return 0;

}

When the above code is compiled and executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

Do..while loop:

Unlike for and while loops, which test the loop condition at the top of the loop, the do...while

loop in C programming language checks its condition at the bottom of the loop.

A do...while loop is similar to a while loop, except that a do...while loop is guaranteed to execute

at least one time.

Syntax:

The syntax of a do...while loop in C programming language is:

do

{
statement(s);

}while(condition);

Notice that the conditional expression appears at the end of the loop, so the statement(s) in the

loop execute once before the condition is tested.

If the condition is true, the flow of control jumps back up to do, and the statement(s) in the loop

execute again. This process repeats until the given condition becomes false.

Flow Diagram:

Example:

#include <stdio.h>

int main ()

{

/* local variable definition */

int a = 10;

/* do loop execution */

do
{

printf("value of a: %d\n", a);

a = a + 1;

}while(a < 20);

return 0;

}

When the above code is compiled and executed, it produces the following result:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

Nested loop:

C programming language allows to use one loop inside another loop. Following section shows

few examples to illustrate the concept.

Syntax:

The syntax for a nested for loop statement in C is as follows:

for (init; condition; increment)

{
for (init; condition; increment)

{
statement(s);

}
statement(s);

}

The syntax for a nested while loop statement in C programming language is as follows:

while(condition)

{
while(condition)

{
statement(s);

}
statement(s);

}

The syntax for a nested do...while loop statement in C programming language is as follows:

do

{

statement(s);

do
{

statement(s);

}while(condition);

}while(condition);

A final note on loop nesting is that you can put any type of loop inside of any other type of loop.

For example, a for loop can be inside a while loop or vice versa.

Example:

The following program uses a nested for loop to find the prime numbers from 2 to 100:

#include <stdio.h>

int main ()

{

/* local variable definition */

int i, j;

for(i=2; i<100; i++) {

for(j=2; j <= (i/j); j++)

if(!(i%j)) break; // if factor found, not prime

if(j > (i/j)) printf("%d is prime\n", i);
}

return 0;

}

When the above code is compiled and executed, it produces the following result:

2 is prime

3 is prime

5 is prime

7 is prime

11 is prime

13 is prime

17 is prime

19 is prime

23 is prime

29 is prime

31 is prime

37 is prime

41 is prime

43 is prime

47 is prime

53 is prime

59 is prime

61 is prime

67 is prime

71 is prime

73 is prime

79 is prime

83 is prime

89 is prime

97 is prime

for loop:

A for loop is a repetition control structure that allows you to efficiently write a loop that needs

to execute a specific number of times.

Syntax:

The syntax of a for loop in C programming language is:

for (init; condition; increment)

{

statement(s);

}

Here is the flow of control in a for loop:

1. The init step is executed first, and only once. This step allows you to declare and

initialize any loop control variables. You are not required to put a statement here, as

long as a semicolon appears.

2. Next, the condition is evaluated. If it is true, the body of the loop is executed. If it is

false, the body of the loop does not execute and flow of control jumps to the next

statement just after the for loop.

3. After the body of the for loop executes, the flow of control jumps back up to the

increment statement. This statement allows you to update any loop control variables.

This statement can be left blank, as long as a semicolon appears after the condition.

4. The condition is now evaluated again. If it is true, the loop executes and the process

repeats itself (body of loop, then increment step, and then again condition). After the

condition becomes false, the for loop terminates.

Flow Diagram:

Example:

#include <stdio.h>

int main ()
{

/* for loop execution */

for(int a = 10; a < 20; a = a + 1)

{
printf("value of a: %d\n", a);

}

return 0;

}

Output:

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

Jump in loops:

The Infinite Loop:

A loop becomes infinite loop if a condition never becomes false. The for loop is traditionally

used for this purpose. Since none of the three expressions that form the for loop are required,

you can make an endless loop by leaving the conditional expression empty.

#include <stdio.h>
int main ()

{
for(; ;)

{

printf("This loop will run forever.\n");

}
return 0;

}

When the conditional expression is absent, it is assumed to be true. You may have an

initialization and increment expression, but C programmers more commonly use the for(;;)

construct to signify an infinite loop.

NOTE: Infinite loop can be terminated by pressing Ctrl + C keys.

Control Statement Description

break statement Terminates the loop or switch statement and transfers execution
to the statement immediately following the loop or switch.

continue statement Causes the loop to skip the remainder of its body and

immediately retest its condition prior to reiterating.

goto statement Transfers control to the labeled statement. Though it is not
advised to use goto statement in your program.

Questions

http://www.tutorialspoint.com/cprogramming/c_break_statement.htm
http://www.tutorialspoint.com/cprogramming/c_continue_statement.htm
http://www.tutorialspoint.com/cprogramming/c_goto_statement.htm

1. Write the syntax of using getchar() and putchar() function.

2. What is the purpose of output statement?

3. Write the general form of switch statement.

4. Write a program to generate fibonnacci series within limit.

5.Explain in detail about formatted input and output functions.

Unit III

Learning Objective

1. Students able to understand different types of Arrays

2. Develop own programs using Arrays

3. Define and Describe Two Dimensional Arrays

4. Know the concepts of Multidimensional array and Strings

Mind Map

Summary

➢ An array is a group of elements (data items) that have a common characteristics (Ex:

numbeic data, character data etc.,) and share a common name.

➢ Arrays whose elements are specified by a single subscript are called one dimensional

or single dimensional array.

➢ The Subscript used to declare an array is sometimes called a dimension and

declaration for it sometimes called the array referred to as dimensioning.
➢ An individual element in an array can be referred to by means of the subscript.

➢ Arrays whose elements are specified by two subscripts are referred as two-dimensional

array or double-dimensional arrays.

Arrays:

C programming language provides a data structure called the array, which can store a fixed-

size sequential collection of elements of the same type. An array is used to store a collection

of data, but it is often more useful to think of an array as a collection of variables of the same

type.

Instead of declaring individual variables, such as number0, number1, ..., and number99, you

declare one array variable such as numbers and use numbers[0], numbers[1], and ...,

numbers[99] to represent individual variables. A specific element in an array is accessed by an

index.

All arrays consist of contiguous memory locations. The lowest address corresponds to the first

element and the highest address to the last element.

One Dimensional Array:

Declaring Arrays

To declare an array in C, a programmer specifies the type of the elements and the number of

elements required by an array as follows:

type arrayName [arraySize];

This is called a single-dimensional array. The arraySize must be an integer constant greater

than zero and type can be any valid C data type. For example, to declare a 10-element array

called balance of type double, use this statement:

double balance[10];

Now balance is avariable array which is sufficient to hold upto 10 double numbers.

Initializing Arrays

Initialize array in C either one by one or using a single statement as follows:

double balance[5] = {1000.0, 2.0, 3.4, 7.0, 50.0};

The number of values between braces { } can not be larger than the number of elements that

we declare for the array between square brackets [].

If you omit the size of the array, an array just big enough to hold the initialization is created.

Therefore, if you write:

double balance[] = {1000.0, 2.0, 3.4, 7.0, 50.0};

You will create exactly the same array as you did in the previous example. Following is an

example to assign a single element of the array:

balance[4] = 50.0;

The above statement assigns element number 5th in the array with a value of 50.0. All arrays

have 0 as the index of their first element which is also called base index and last index of an

array will be total size of the array minus 1. Following is the pictorial representation of the

same array we discussed above:

Accessing Array Elements

An element is accessed by indexing the array name. This is done by placing the index of the

element within square brackets after the name of the array. For example:

double salary = balance[9];

The above statement will take 10th element from the array and assign the value to salary

variable. Following is an example which will use all the above mentioned three concepts viz.

declaration, assignment and accessing arrays:

#include <stdio.h>

int main ()

{

int n[10]; /* n is an array of 10 integers */

int i,j;

/* initialize elements of array n to 0 */

for (i = 0; i < 10; i++)

{

n[i] = i + 100; /* set element at location i to i + 100 */

}

/* output each array element's value */

for (j = 0; j < 10; j++)

{

printf("Element[%d] = %d\n", j, n[j]);

}

return 0;

}

Output:

Element[0] = 100

Element[1] = 101

Element[2] = 102

Element[3] = 103

Element[4] = 104

Element[5] = 105

Element[6] = 106

Element[7] = 107

Element[8] = 108

Element[9] = 109

Two-dimensional Array:

C programming language allows multidimensional arrays. Here is the general form of a

multidimensional array declaration:

type name[size1][size2]...[sizeN];

For example, the following declaration creates a three dimensional 5 . 10 . 4 integer array:

int threedim[5][10][4];

Two-Dimensional Arrays:

The simplest form of the multidimensional array is the two-dimensional array. A two-

dimensional array is, in essence, a list of one-dimensional arrays. To declare a two-dimensional

integer array of size x,y you would write something as follows:

type arrayName [x][y];

Where type can be any valid C data type and arrayName will be a valid C identifier. A two-

dimensional array can be think as a table which will have x number of rows and y number of

columns. A 2-dimensional array a, which contains three rows and four columns can be shown

as below:

Thus, every element in array a is identified by an element name of the form a[i][j], where a

is the name of the array, and i and j are the subscripts that uniquely identify each element in a.

Initializing Two-Dimensional Arrays:

Multidimensional arrays may be initialized by specifying bracketed values for each row.

Following is an array with 3 rows and each row has 4 columns.

int a[3][4] = {

{0, 1, 2, 3} , /* initializers for row indexed by 0 */

{4, 5, 6, 7} , /* initializers for row indexed by 1 */

{8, 9, 10, 11} /* initializers for row indexed by 2 */

};

The nested braces, which indicate the intended row, are optional. The following initialization is

equivalent to previous example:

int a[3][4] = {0,1,2,3,4,5,6,7,8,9,10,11};

Accessing Two-Dimensional Array Elements:

An element in 2-dimensional array is accessed by using the subscripts, i.e., row index and

column index of the array. For example:

int val = a[2][3];

The above statement will take 4th element from the 3rd row of the array. You can verify it in

the above diagram. Let us check below program where we have used nested loop to handle a

two dimensional array:

#include <stdio.h>

int main ()

{
/* an array with 5 rows and 2 columns*/

int a[5][2] = { {0,0}, {1,2}, {2,4}, {3,6},{4,8}};

int i, j;

/* output each array element's value */
for (i = 0; i < 5; i++)

{

for (j = 0; j < 2; j++)

{
printf("a[%d][%d] = %d\n", i,j, a[i][j]);

}

}

return 0;

}

When the above code is compiled and executed, it produces the following result:

a[0][0]: 0

a[0][1]: 0

a[1][0]: 1

a[1][1]: 2

a[2][0]: 2

a[2][1]: 4

a[3][0]: 3

a[3][1]: 6

a[4][0]: 4

a[4][1]: 8

As explained above, you can have arrays with any number of dimensions, although it is likely

that most of the arrays you create will be of one or two dimensions.

Multi Dimensional Array

The basic syntax or, the declaration of multi-dimensional array in C Programming is

Data_Type Arr_Name[Tables][Row_Size][Column_Size]

• Data_type: It will decide the type of elements it will accept. For example, If we want

to store integer values then we declare the Data Type as int, If we want to store Float

values then we declare the Data Type as float etc

• Arr_Name: This is the name you want to give it to Multi Dimensional array in C.

• Tables: It will decide the number of tables one can accept. Two Dimensional is always

a single table with rows and columns. In contrast, Multi Dimensional array in C is

more than 1 table with rows and columns.

• Row_Size: Number of Row elements it can store. For example, Row_Size =10, the

array will have 10 rows.

• Column_Size: Number of Column elements it can store. For example, Column_Size =

8, it will have 8 Columns.

Calculate the maximum number of elements in a Three Dimensional using: [Tables] *

[Row_Size] * [Column_Size]

For Example,

int Employees[2][4][3];

Initialization

Initializing Multi Dimensional Array as follows:
int Employees[2][4][3] = { { {10, 20, 30}, {15, 25, 35}, {22, 44, 66}, {33, 55, 77} },

{ {1, 2, 3}, {5, 6, 7}, {2, 4, 6}, {3, 5, 7} }

};

Dynamic arrays:

A dynamic array is quite similar to a regular array, but its size is modifiable during

program runtime. Dynamic Array elements occupy a contiguous block of memory.

Once an array has been created, its size cannot be changed. However, a dynamic array

is different. A dynamic array can expand its size even after it has been filled.

During the creation of an array, it is allocated a predetermined amount of memory.

This is not the case with a dynamic array as it grows its memory size by a certain factor when

there is a need.

Features in C that enables to implement a own dynamic array are:

The malloc() function:

The malloc() function only alocate memory cells for one variable:

malloc(nBytes) will allocates a block of memory cells of at least nBytes bytes that us

suitably aligned for any usage.

The calloc()function:

To allocate memory cells for N consecutive variable (= array), you must use this

function:

Example:

calloc(nElems, nBytes)

calloc(10, 8)
// Allocate space for 10 elements of size 8 (= array of 10 double)

The calloc() function allocates space for an array of nElems elements of size nBytes.

The free() function:

The allocated space will alos be initialized to zeros.

Strings:

String:

The string in C programming language is actually a one-dimensional array of characters which

is terminated by a null character '\0'. Thus a null-terminated string contains the characters that

comprise the string followed by a null.

The following declaration and initialization create a string consisting of the word "Hello". To

hold the null character at the end of the array, the size of the character array containing the string

is one more than the number of characters in the word "Hello."

char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

If you follow the rule of array initialization then you can write the above statement as follows:

char greeting[] = "Hello";

Following is the memory presentation of above defined string in C/C++:

Actually, you do not place the null character at the end of a string constant. The C compiler

automatically places the '\0' at the end of the string when it initializes the array. Let us try to

print above mentioned string:

#include <stdio.h>

int main ()

{

char greeting[6] = {'H', 'e', 'l', 'l', 'o', '\0'};

printf("Greeting message: %s\n", greeting);

return 0;

}

When the above code is compiled and executed, it produces result something as follows:

Greeting message: Hello

C supports a wide range of functions that manipulate null-terminated strings:

S.N. Function & Purpose

1

strcpy(s1, s2);

Copies string s2 into string s1.

2

strcat(s1, s2);

Concatenates string s2 onto the end of string s1.

3

strlen(s1);

Returns the length of string s1.

4

strcmp(s1, s2);

Returns 0 if s1 and s2 are the same; less than 0 if s1<s2; greater than 0 if s1>s2.

5

strchr(s1, ch);

Returns a pointer to the first occurrence of character ch in string s1.

6

strstr(s1, s2);

Returns a pointer to the first occurrence of string s2 in string s1.

Following example makes use of few of the above-mentioned functions:

#include <stdio.h>

#include <string.h>

int main ()

{

char str1[12] = "Hello";
char str2[12] = "World";

char str3[12];

int len ;

/* copy str1 into str3 */

strcpy(str3, str1);

printf("strcpy(str3, str1) : %s\n", str3);

/* concatenates str1 and str2 */
strcat(str1, str2);

printf("strcat(str1, str2): %s\n", str1);

/* total lenghth of str1 after concatenation */

len = strlen(str1);

printf("strlen(str1) : %d\n", len);

return 0;

}

When the above code is compiled and executed, it produces result something as follows:

strcpy(str3, str1) : Hello

strcat(str1, str2): HelloWorld

strlen(str1) : 10

You can find a complete list of c string related functions in C Standard Library.

Questions

1. Define an array.

2. Explain single dimensional arrays with examples.

3. Explain two dimensional arrays with examples.

4. Write about the rules to be followed for array initialization.

5. Write a program to display array of names.

6. Write the syntax of initializing one-dimensional array at run-time?

7. Discuss String handling functions.

Unit IV

Learning Objective

1. Discuss for user-defined functions

2. Discuss about multi-function program

3. Define and function and function declaration

4. Discuss about elements of user-defined function

5. Discuss return values and their types

Mind Map

Summary

➢ A function is defined as a self-contained program which is written for the purpose of

accomplishing some task.

➢ A User-Defined Function, or UDF, is a function provided by the user of a program. C

functions can be classified into two categories, namely, library functions and user-

defined functions.

➢ The function definition is an independent program module that is specially written to

implement the requirements of the function.

➢ The return statement is used to return the control from the calling function to the next
statement of the called portion of the program.

➢ A function can be accessed (i.e., called) by specifying its name, followed by a list of

arguments enclosed in parenthesis and separated by commas.

Functions:

A function is a group of statements that together perform a task. Every C program has at least

one function, which is main(), and all the most trivial programs can define additional

functions.

You can divide up your code into separate functions. How you divide up your code among

different functions is up to you, but logically the division usually is so each function performs

a specific task.

A function declaration tells the compiler about a function's name, return type, and parameters.

A function definition provides the actual body of the function.

The C standard library provides numerous built-in functions that your program can call. For

example, function strcat() to concatenate two strings, function memcpy() to copy one

memory location to another location and many more functions.

A function is known with various names like a method or a sub-routine or a procedure, etc.

Defining a Function:

The general form of a function definition in C programming language is as follows:

return_type function_name(parameter list)

{

body of the function

}

A function definition in C programming language consists of a function header and afunction

body. Here are all the parts of a function:

• Return Type: A function may return a value. The return_type is the data type of the

value the function returns. Some functions perform the desired operations without

returning a value. In this case, the return_type is the keyword void.

• Function Name: This is the actual name of the function. The function name and the

parameter list together constitute the function signature.

• Parameters: A parameter is like a placeholder. When a function is invoked, you pass

a value to the parameter. This value is referred to as actual parameter or argument. The

parameter list refers to the type, order, and number of the parameters of a function.

Parameters are optional; that is, a function may contain no parameters.

• Function Body: The function body contains a collection of statements that define what

the function does.

Example:

Following is the source code for a function called max(). This function takes two parameters

num1 and num2 and returns the maximum between the two:

/* function returning the max between two numbers */

int max(int num1, int num2)

{

/* local variable declaration */

int result;

if (num1 > num2)

result = num1;

else

result = num2;

return result;

}

Function Declarations:

A function declaration tells the compiler about a function name and how to call the function.

The actual body of the function can be defined separately.

A function declaration has the following parts:

return_type function_name(parameter list);

For the above defined function max(), following is the function declaration:

int max(int num1, int num2);

Parameter names are not important in function declaration only their type is required, so

following is also valid declaration:

int max(int, int);

Function declaration is required when you define a function in one source file and you call that

function in another file. In such case you should declare the function at the top of the file

calling the function.

Calling a Function:

While creating a C function, you give a definition of what the function has to do. To use a

function, you will have to call that function to perform the defined task.

When a program calls a function, program control is transferred to the called function. A called

function performs defined task and when its return statement is executed or when its function-

ending closing brace is reached, it returns program control back to the main program.

To call a function, you simply need to pass the required parameters along with function name,

and if function returns a value, then you can store returned value. For example:

#include <stdio.h>

/* function declaration */

int max(int num1, int num2);

int main ()

{

/* local variable definition */

int a = 100;

int b = 200;

int ret;

/* calling a function to get max value */

ret = max(a, b);

printf("Max value is : %d\n", ret);

return 0;

}

/* function returning the max between two numbers */

int max(int num1, int num2)

{

/* local variable declaration */

int result;

if (num1 > num2)

result = num1;

else

result = num2;

return result;

}

I kept max() function along with main() function and compiled the source code. While running

final executable, it would produce the following result:

Max value is : 200

Function Arguments:

If a function is to use arguments, it must declare variables that accept the values of the

arguments. These variables are called the formal parameters of the function.

The formal parameters behave like other local variables inside the function and are created

upon entry into the function and destroyed upon exit.

While calling a function, there are two ways that arguments can be passed to a function:

Call Type Description

Call by value This method copies the actual value of an argument into the

formal parameter of the function. In this case, changes made to

the parameter inside the function have no effect on the argument.

Call by reference This method copies the address of an argument into the formal

parameter. Inside the function, the address is used to access the

actual argument used in the call. This means that changes made

to the parameter affect the argument.

http://www.tutorialspoint.com/cprogramming/c_function_call_by_value.htm
http://www.tutorialspoint.com/cprogramming/c_function_call_by_reference.htm

By default, C uses call by value to pass arguments. In general, this means that code within a

function cannot alter the arguments used to call the function and above mentioned example

while calling max() function used the same method.

Scope, Visibility and Lifetime of Variables:

A scope in any programming is a region of the program where a defined variable can have its

existence and beyond that variable can not be accessed. There are three places where variables

can be declared in C programming language:

1. Inside a function or a block which is called local variables,

2. Outside of all functions which is called global variables.

3. In the definition of function parameters which is called formal parameters.

Let us explain what are local and global variables and formal parameters.

Local Variables

Variables that are declared inside a function or block are called local variables. They can be

used only by statements that are inside that function or block of code. Local variables are not

known to functions outside their own. Following is the example using local variables. Here all

the variables a, b and c are local to main() function.

#include <stdio.h>

int main ()

{

/* local variable declaration */

int a, b;

int c;

/* actual initialization */

a = 10;

b = 20;

c = a + b;

printf ("value of a = %d, b = %d and c = %d\n", a, b, c);

return 0;

}

Global Variables

Global variables are defined outside of a function, usually on top of the program. The global

variables will hold their value throughout the lifetime of your program and they can be

accessed inside any of the functions defined for the program.

A global variable can be accessed by any function. That is, a global variable is available for

use throughout your entire program after its declaration. Following is the example using global

and local variables:

#include <stdio.h>

/* global variable declaration */

int g;

int main ()

{

/* local variable declaration */

int a, b;

/* actual initialization */

a = 10;

b = 20;

g = a + b;

printf ("value of a = %d, b = %d and g = %d\n", a, b, g);

return 0;

}

A program can have same name for local and global variables but value of local variable inside

a function will take preference. Following is an example:

#include <stdio.h>

/* global variable declaration */

int g = 20;

int main ()

{

/* local variable declaration */

int g = 10;

printf ("value of g = %d\n", g);

return 0;

}

When the above code is compiled and executed, it produces the following result:

value of g = 10

Formal Parameters

Function parameters, formal parameters, are treated as local variables with-in that function and

they will take preference over the global variables. Following is an example:

#include <stdio.h>

/* global variable declaration */

int a = 20;

int main ()

{

/* local variable declaration in main function */

int a = 10;

int b = 20;

int c = 0;

printf ("value of a in main() = %d\n", a);

c = sum(a, b);

printf ("value of c in main() = %d\n", c);

return 0;

}

/* function to add two integers */

int sum(int a, int b)

{

printf ("value of a in sum() = %d\n", a);

printf ("value of b in sum() = %d\n", b);

return a + b;

}

When the above code is compiled and executed, it produces the following result:

value of a in main() = 10

value of a in sum() = 10

value of b in sum() = 20

value of c in main() = 30

Initializing Local and Global Variables

When a local variable is defined, it is not initialized by the system, you must initialize it

yourself. Global variables are initialized automatically by the system when you define them as

follows:

Data Type Initial Default Value

int 0

char '\0'

float 0

double 0

pointer NULL

It is a good programming practice to initialize variables properly otherwise, your program may

produce unexpected results because uninitialized variables will take some garbage value

already available at its memory location.

Structures and Unions:

Structure:

C arrays allow you to define type of variables that can hold several data items of the same kind

but structure is another user defined data type available in C programming, which allows you

to combine data items of different kinds.

Structures are used to represent a record, Suppose you want to keep track of your books in a

library. You might want to track the following attributes about each book:

• Title

• Author

• Subject

• Book ID

Defining a Structure

To define a structure, you must use the struct statement. The struct statement defines a new

data type, with more than one member for your program. The format of the struct statement is

this:

struct [structure tag]

{

member definition;
member definition;

...

member definition;

} [one or more structure variables];

The structure tag is optional and each member definition is a normal variable definition, such

as int i; or float f; or any other valid variable definition. At the end of the structure's definition,

before the final semicolon, you can specify one or more structure variables but it is optional.

Here is the way you would declare the Book structure:

struct Books

{

char title[50];

char author[50];

char subject[100];

int book_id;

} book;

Accessing Structure Members

To access any member of a structure, we use the member access operator (.). The member

access operator is coded as a period between the structure variable name and the structure

member that we wish to access. You would use struct keyword to define variables of structure

type. Following is the example to explain usage of structure:

#include <stdio.h>

#include <string.h>

struct Books

{

char title[50];

char author[50];

char subject[100];

int book_id;
};

int main()

{

struct Books Book1; /* Declare Book1 of type Book */

struct Books Book2; /* Declare Book2 of type Book */

/* book 1 specification */

strcpy(Book1.title, "C Programming");

strcpy(Book1.author, "Nuha Ali");

strcpy(Book1.subject, "C Programming Tutorial");

Book1.book_id = 6495407;

/* book 2 specification */

strcpy(Book2.title, "Telecom Billing");

strcpy(Book2.author, "Zara Ali");

strcpy(Book2.subject, "Telecom Billing Tutorial");

Book2.book_id = 6495700;

/* print Book1 info */

printf("Book 1 title : %s\n", Book1.title);

printf("Book 1 author : %s\n", Book1.author);

printf("Book 1 subject : %s\n", Book1.subject);

printf("Book 1 book_id : %d\n", Book1.book_id);

/* print Book2 info */

printf("Book 2 title : %s\n", Book2.title);

printf("Book 2 author : %s\n", Book2.author);

printf("Book 2 subject : %s\n", Book2.subject);

printf("Book 2 book_id : %d\n", Book2.book_id);

return 0;

}

When the above code is compiled and executed, it produces the following result:

Book 1 title : C Programming

Book 1 author : Nuha Ali

Book 1 subject : C Programming Tutorial
Book 1 book_id : 6495407

Book 2 title : Telecom Billing

Book 2 author : Zara Ali

Book 2 subject : Telecom Billing Tutorial

Book 2 book_id : 6495700

Structures as Function Arguments

You can pass a structure as a function argument in very similar way as you pass any other

variable or pointer. You would access structure variables in the similar way as you have

accessed in the above example:

#include <stdio.h>

#include <string.h>

struct Books

{

char title[50];

char author[50];

char subject[100];

int book_id;

};

/* function declaration */

void printBook(struct Books book);

int main()

{

struct Books Book1; /* Declare Book1 of type Book */

struct Books Book2; /* Declare Book2 of type Book */

/* book 1 specification */

strcpy(Book1.title, "C Programming");

strcpy(Book1.author, "Nuha Ali");

strcpy(Book1.subject, "C Programming Tutorial");

Book1.book_id = 6495407;

/* book 2 specification */

strcpy(Book2.title, "Telecom Billing");

strcpy(Book2.author, "Zara Ali");

strcpy(Book2.subject, "Telecom Billing Tutorial");

Book2.book_id = 6495700;

/* print Book1 info */

printBook(Book1);

/* Print Book2 info */

printBook(Book2);

return 0;

}

void printBook(struct Books book)

{

printf("Book title : %s\n", book.title);

printf("Book author : %s\n", book.author);

printf("Book subject : %s\n", book.subject);
printf("Book book_id : %d\n", book.book_id);

}

When the above code is compiled and executed, it produces the following result:

Book title : C Programming

Book author : Nuha Ali

Book subject : C Programming Tutorial
Book book_id : 6495407

Book title : Telecom Billing

Book author : Zara Ali

Book subject : Telecom Billing Tutorial

Book book_id : 6495700

Pointers to Structures

You can define pointers to structures in very similar way as you define pointer to any other

variable as follows:

struct Books *struct_pointer;

Now, you can store the address of a structure variable in the above defined pointer variable. To

find the address of a structure variable, place the & operator before the structure's name as

follows:

struct_pointer = &Book1;

To access the members of a structure using a pointer to that structure, you must use the ->

operator as follows:

struct_pointer->title;

Let us re-write above example using structure pointer, hope this will be easy for you to

understand the concept:

#include <stdio.h>
#include <string.h>

struct Books

{

char title[50];

char author[50];

char subject[100];

int book_id;

};

/* function declaration */

void printBook(struct Books *book);

int main()
{

struct Books Book1; /* Declare Book1 of type Book */

struct Books Book2; /* Declare Book2 of type Book */

/* book 1 specification */

strcpy(Book1.title, "C Programming");

strcpy(Book1.author, "Nuha Ali");

strcpy(Book1.subject, "C Programming Tutorial");

Book1.book_id = 6495407;

/* book 2 specification */

strcpy(Book2.title, "Telecom Billing");

strcpy(Book2.author, "Zara Ali");

strcpy(Book2.subject, "Telecom Billing Tutorial");

Book2.book_id = 6495700;

/* print Book1 info by passing address of Book1 */

printBook(&Book1);

/* print Book2 info by passing address of Book2 */
printBook(&Book2);

return 0;

}
void printBook(struct Books *book)

{

printf("Book title : %s\n", book->title);

printf("Book author : %s\n", book->author);

printf("Book subject : %s\n", book->subject);
printf("Book book_id : %d\n", book->book_id);

}

When the above code is compiled and executed, it produces the following result:

Book title : C Programming
Book author : Nuha Ali

Book subject : C Programming Tutorial

Book book_id : 6495407

Book title : Telecom Billing
Book author : Zara Ali

Book subject : Telecom Billing Tutorial

Book book_id : 6495700

Union:

A union is a special data type available in C that enables you to store different data types in the

same memory location. You can define a union with many members, but only one member can

contain a value at any given time. Unions provide an efficient way of using the same memory

location for multi-purpose.

Defining a Union

To define a union, you must use the union statement in very similar was as you did while

defining structure. The union statement defines a new data type, with more than one member

for your program. The format of the union statement is as follows:

union [union tag]

{

member definition;

member definition;
...

member definition;

} [one or more union variables];

The union tag is optional and each member definition is a normal variable definition, such as

int i; or float f; or any other valid variable definition. At the end of the union's definition, before

the final semicolon, you can specify one or more union variables but it is optional. Here is the

way you would define a union type named Data which has the three members i, f, and str:

union Data

{

int i;

float f;

char str[20];

} data;

Now, a variable of Data type can store an integer, a floating-point number, or a string of

characters. This means that a single variable ie. same memory location can be used to store

multiple types of data. You can use any built-in or user defined data types inside a union based

on your requirement.

The memory occupied by a union will be large enough to hold the largest member of the union.

For example, in above example Data type will occupy 20 bytes of memory space because this

is the maximum space which can be occupied by character string. Following is the example

which will display total memory size occupied by the above union:

#include <stdio.h>

#include <string.h>

union Data

{

int i;

float f;

char str[20];

};

int main()

{
union Data data;

printf("Memory size occupied by data : %d\n", sizeof(data));

return 0;

}

When the above code is compiled and executed, it produces the following result:

Memory size occupied by data : 20

Accessing Union Members

To access any member of a union, we use the member access operator (.). The member access

operator is coded as a period between the union variable name and the union member that we

wish to access. You would use union keyword to define variables of union type. Following is

the example to explain usage of union:

#include <stdio.h>

#include <string.h>

union Data

{

int i;

float f;

char str[20];

};

int main()

{
union Data data;

data.i = 10;

data.f = 220.5;

strcpy(data.str, "C Programming");

printf("data.i : %d\n", data.i);

printf("data.f : %f\n", data.f);

printf("data.str : %s\n", data.str);

return 0;

}

When the above code is compiled and executed, it produces the following result:

data.i : 1917853763

data.f : 4122360580327794860452759994368.000000

data.str : C Programming

Here, we can see that values of i and f members of union got corrupted because final value

assigned to the variable has occupied the memory location and this is the reason that the value

if str member is getting printed very well. Now let's look into the same example once again

where we will use one variable at a time which is the main purpose of having union:

#include <stdio.h>

#include <string.h>

union Data

{

int i;
float f;

char str[20];

};

int main()

{
union Data data;

data.i = 10;

printf("data.i : %d\n", data.i);

data.f = 220.5;

printf("data.f : %f\n", data.f);

strcpy(data.str, "C Programming");

printf("data.str : %s\n", data.str);

return 0;

}

When the above code is compiled and executed, it produces the following result:

data.i : 10

data.f : 220.500000

data.str : C Programming

Here, all the members are getting printed very well because one member is being used at a time.

Size of Structures

In C language, sizeof() operator is used to calculate the size of structure, variables, pointers or

data types, data types could be pre-defined or user-defined.

Example:

#include <stdio.h>

struct student { // Declaring a structure named "student"

int rollno;
char name[16];

int marks;

};

int main() {

struct student s; // Declaring a structure type data named "s"

int size = sizeof(s);

printf("Size of Structure : %d", size);

return 0;

}

Bit Fields

Bit Fields allow the packing of data in a structure. This is especially useful when memory or

data storage is at a premium. Typical examples:

• Packing several objects into a machine word. e.g. 1 bit flags can be compacted.

• Reading external file formats -- non-standard file formats could be read in. E.g. 9 bit

integers.

C allows us do this in a structure definition by putting :bit length after the variable. For example:

struct packed_struct {

unsigned int f1:1;
unsigned int f2:1;

unsigned int f3:1;

unsigned int f4:1;

unsigned int type:4;

unsigned int my_int:9;

} pack;

Here, the packed_struct contains 6 members: Four 1 bit flags f1..f3, a 4 bit type and a 9 bit

my_int.

C automatically packs the above bit fields as compactly as possible, provided that the maximum

length of the field is less than or equal to the integer word length of the computer. If this is not

the case then some compilers may allow memory overlap for the fields whilst other would store

the next field in the next word.

Questions

1. What is the need for functions?

2. What is a function?

3. Explain the general form of defining a function.

4. What are formal arguments?

5. What are actual arguments?

6. How the structures members are accessed.

7. What is the difference between structure and union.

8. Define bit field.

Unit V

Learning Objective

1. To differentiate the variables and Pointers variables

2. To Know how to define and initialize Pointer Variables

3. Understanding Accessing Variable through its Pointers

4. To identify the pointes as function arguments and string

5. To understand the concepts of files

6. To know how to handle errors and understand command line arguments

Mind Map

Summary

➢ A pointer is a variable, which represents the memory location (not the value) of a data
items, such as a variable or an array element.

➢ The ampersand operator (&) gives the address of a variable.

➢ The three values that can be used to initialize the pointer are zero, null and address.

➢ The pointer that has not been initialized is referred to as the dangling pointer.

➢ Only an address of a variable can be stored in a pointer variable.

➢ Do not store the address of a variable of one type into a pointer variable of another
type.

➢ The value of a variable cannot be assigned to a pointer variable.

➢ A pointer variable contains garbage until it is initialized.

Pointers:

A pointer is a variable whose value is the address of another variable, i.e., direct address

of the memory location. Like any variable or constant, you must declare a pointer before you

can use it to store any variable address. The general form of a pointer variable declaration is:

type *var-name;

Here, type is the pointer's base type; it must be a valid C data type and var-name is the name of

the pointer variable. The asterisk * you used to declare a pointer is the same asterisk that you

use for multiplication. However, in this statement the asterisk is being used to designate a

variable as a pointer. Following are the valid pointer declaration:

int *ip; /* pointer to an integer */

double *dp; /* pointer to a double */

float *fp; /* pointer to a float */

char *ch /* pointer to a character */

The actual data type of the value of all pointers, whether integer, float, character, or otherwise,

is the same, a long hexadecimal number that represents a memory address. The only difference

between pointers of different data types is the data type of the variable or constant that the

pointer points to.

Declaring, Initializing and accessing pointer members:

There are few important operations, which we will do with the help of pointers very frequently.

(a) define a pointer variable (b) assign the address of a variable to a pointer and (c) finally access

the value at the address available in the pointer variable. This is done by using unary operator

* that returns the value of the variable located at the address specified by its operand. Following

example makes use of these operations:

#include <stdio.h>

int main ()

{

int var = 20; /* actual variable declaration */

int *ip; /* pointer variable declaration */

ip = &var; /* store address of var in pointer variable*/

printf("Address of var variable: %x\n", &var);

/* address stored in pointer variable */

printf("Address stored in ip variable: %x\n", ip);

/* access the value using the pointer */

printf("Value of *ip variable: %d\n", *ip);

return 0;

}

When the above code is compiled and executed, it produces result something as follows:

value add1 add2

Address of var variable: bffd8b3c

Address stored in ip variable: bffd8b3c

Value of *ip variable: 20

Chain of Pointers

It is possible to make a pointer to point to another pointer, thus creating a chain of pointers.

P2 P1 var

Here, the pointer variable p2 contains the add of the pointer variable P1, which points to the

location that contains the desired value. This is known as multiple indirection's.

A variable that is a pointer to a pointer must be declared using additional indirection operator

symbols in front of the name.

Ex:– int p2;

This declaration tells the compiler that p2 is a pointer to a pointer of int type.

Ex:–

#include

main()

{

Int x, p1, p2;

x=100;

p1=&x;

p2=&p1;

printf(“%d”, **p2);

}

This code will display the value 100. Here, P1 is declared as a pointer to an integer & p2 as a

declared as a pointer to an integer & p2 as a pointer to a pointer to an integer.

Pointer increments and scale factors

Pointers can be incremented like.

p1=p1+1;

p1=p2+2; &so on.

The expression like p1++;

Will cause the pointer p1 to point to the next value of its type. For ex. If p1 is an integer pointer

with an initial value, say 2800, then after with an initial value, the value of p1 will be 2902, &

not 2801.

i.e., when we increment a pointer, its value is incremented by the length of the data type that it

points to . This length is called the scale factor.

The no of bytes used to store various data types depends on the system & can be found by

making use of the size of operator.

Character 1 byte

Integers 2 bytes

Floats 4 bytes

Long integers 4 bytes

Double 8 bytes

File I/o:

A file represents a sequence of bytes, does not matter if it is a text file or binary file. C

programming language provides access on high level functions as well as low level (OS level)

calls to handle file on your storage devices. This chapter will take you through important calls

for the file management.

Opening Files

You can use the fopen() function to create a new file or to open an existing file, this call will

initialize an object of the type FILE, which contains all the information necessary to control

the stream. Following is the prototype of this function call:

FILE *fopen(const char * filename, const char * mode);

Here, filename is string literal, which you will use to name your file and access mode can have

one of the following values:

Mode Description

r Opens an existing text file for reading purpose.

w
Opens a text file for writing, if it does not exist then a new file is created. Here your

program will start writing content from the beginning of the file.

a
Opens a text file for writing in appending mode, if it does not exist then a new file is

created. Here your program will start appending content in the existing file content.

r+ Opens a text file for reading and writing both.

w+
Opens a text file for reading and writing both. It first truncate the file to zero length if it

exists otherwise create the file if it does not exist.

a+
Opens a text file for reading and writing both. It creates the file if it does not exist. The

reading will start from the beginning but writing can only be appended.

If you are going to handle binary files then you will use below mentioned access modes instead

of the above mentioned:

"rb", "wb", "ab", "rb+", "r+b", "wb+", "w+b", "ab+", "a+b"

Closing a File

To close a file, use the fclose() function. The prototype of this function is:

int fclose(FILE *fp);

The fclose() function returns zero on success, or EOF if there is an error in closing the file.

This function actually, flushes any data still pending in the buffer to the file, closes the file, and

releases any memory used for the file. The EOF is a constant defined in the header file stdio.h.

There are various functions provide by C standard library to read and write a file character by

character or in the form of a fixed length string. Let us see few of the in the next section.

Writing a File

Following is the simplest function to write individual characters to a stream:

int fputc(int c, FILE *fp);

The function fputc() writes the character value of the argument c to the output stream referenced

by fp. It returns the written character written on success otherwise EOF if there is an error. You

can use the following functions to write a null-terminated string to a stream:

int fputs(const char *s, FILE *fp);

The function fputs() writes the string s to the output stream referenced by fp. It returns a non-

negative value on success, otherwise EOF is returned in case of any error. You can use int

fprintf(FILE *fp,const char *format, ...) function as well to write a string into a file. Try the

following example:

Make sure you have /tmp directory available, if its not then before proceeding, you must create
this directory on your machine.

#include <stdio.h>

main()

{
FILE *fp;

fp = fopen("/tmp/test.txt", "w+");

fprintf(fp, "This is testing for fprintf...\n");

fputs("This is testing for fputs...\n", fp);

fclose(fp);

}

When the above code is compiled and executed, it creates a new file test.txt in /tmp directory

and writes two lines using two different functions. Let us read this file in next section.

Reading a File

Following is the simplest function to read a single character from a file:

int fgetc(FILE * fp);

The fgetc() function reads a character from the input file referenced by fp. The return value is

the character read, or in case of any error it returns EOF. The following functions allow you to

read a string from a stream:

char *fgets(char *buf, int n, FILE *fp);

The functions fgets() reads up to n - 1 characters from the input stream referenced by fp. It

copies the read string into the buffer buf, appending a null character to terminate the string.

If this function encounters a newline character '\n' or the end of the file EOF before they have

read the maximum number of characters, then it returns only the characters read up to that point

including new line character. You can also use int fscanf(FILE *fp, const char *format, ...)

function to read strings from a file but it stops reading after the first space character encounters.

#include <stdio.h>

main()

{
FILE *fp;

char buff[255];

fp = fopen("/tmp/test.txt", "r");

fscanf(fp, "%s", buff);
printf("1 : %s\n", buff);

fgets(buff, 255, (FILE*)fp);

printf("2: %s\n", buff);

fgets(buff, 255, (FILE*)fp);

printf("3: %s\n", buff);

fclose(fp);
}

Output

1 : This

2: is testing for fprintf...

3: This is testing for fputs...

First fscanf() method read just This because after that it encountered a space, second call is for

fgets() which read the remaining line till it encountered end of line. Finally last call fgets() read

second line completely.

Binary I/O Functions

There are following two functions, which can be used for binary input and output:

size_t fread(void *ptr, size_t size_of_elements,
size_t number_of_elements, FILE *a_file);

size_t fwrite(const void *ptr, size_t size_of_elements,

size_t number_of_elements, FILE *a_file);

Both of these functions should be used to read or write blocks of memories - usually arrays or

structures.

Error Handling in C

C language does not provide any direct support for error handling. However a few

methods and variables defined in error.h header file can be used to point out error using the

return statement in a function. In C language, a function returns -1 or NULL value in case of

any error and a global variable errno is set with the error code. So the return value can be used

to check error while programming.

#include <stdio.h>

#include <errno.h>

#include <string.h>

int main ()

{

FILE *fp;

/* If a file, which does not exists, is opened,

we will get an error
*/

fp = fopen("IWillReturnError.txt", "r");

printf("Value of errno: %d\n ", errno);

printf("The error message is : %s\n", strerror(errno));
perror("Message from perror");

return 0;

}

Command-Line Arguments

Command-line arguments are given after the name of a program in command-line

operating systems like DOS or Linux, and are passed in to the program from the operating

system.

C programming language gives the programmer the provision to add parameters or

arguments inside the main function to reduce the length of the code. These arguments are called

command line arguments in C.

Components of command line arguments

Generally, 2 parameters are passed into the main function:

1. Number of command line arguments

2. The list of command line arguments

The basic syntax is:

int main(int argc, char *argv[])

{

----// body of the main function

}

Another way to implement command line arguments is:

int main(int argc, char **argv[])

{

-----// body of the main function

}

i) argc: It refers to “argument count”. It is the first parameter that we use to store the

number of command line arguments. It is important to note that the value of argc

should be greater than or equal to 0.

ii) agrv: It refers to “argument vector”. It is basically an array of character pointer

which we use to list all the command line arguments.

Example:

#include<stdio.h>

int main(int argc, char** argv)

{

printf("Command line arguments!\n\n");

int i;

printf("The number of arguments are: %d\n",argc);

printf("The arguments are:");

for (i = 0; i < argc; i++)

{

printf("%s\n", argv[i]);

}

return 0;

}

Questions

1. How to find the address of a variable?

2. What is chain of Pointers?

3. How will C errors are handled?

4. Write the different modes of file access.

5. Write the general form of file opening and closing.

6. What is purpose of argv() and argc()?

