
Dr. UMAYAL RAMANATHAN COLLEGE FOR WOMEN, KARAIKUDI-03

Accredited with B+ Grade by NAAC

Affiliated to Alagappa University

(Run by Dr. Alagappa Chettiar Educational Trust)

Karaikudi – 630 003

Study Material

2020 – 2021

7BCEE1B

Web Design

Name of the Staff : Ms. R. Valaiyapathy

Department : Computer Science

Course Outcome:

III YEAR – V SEMESTER

COURSE CODE: 7BCEE1B

ELECTIVE COURSE-I (B)–WEB DESIGN

Unit I

Introduction to HTML: Markup Languages – editing HTML – common tags – header – text

styling – linking – images – formatting text – special characters, horizontal rules and line breaks –

unordered list – nested and ordered list – tables and formatting – forms – linking – frames.

Unit II

Cascading Style Sheets:

Introduction – Inline styles – Embedded Style Sheets – Conflicting Style – Linking External Style

Sheets – Positioning Elements – Backgrounds – Element Dimension – Box Model and Text Flow –

Media Types – Building a Dropdown menu

Unit III

Java Script: introduction – control structures – if structure – while structure – assignment

Web Design

7BCEE1B

CO1

To provide the learners to

understanding the basic concepts and

terminology of HTML programming in

general.

CO2

Ability to understand how to use CSS

in webpage, how to add the elements

are discussed.

CO3

Formats based on the requirements of

the problem.

CO4

To learn about the user defined

functions

operators – increment and decrement operators – for structure – switch structure – do/while structure –

break and continue statement – logical operators

Unit IV

Java Script Functions: Programmer defined functions – function definitions – duration of

identifiers – scope rules – recursion – recursion vs iteration – global functions

Java Script Arrays: Arrays – declaring and allocating arrays – references and reference

parameters – passing arrays to functions – sorting arrays – searching arrays – multiple-subscripted arrays

Java Script Objects: Math object – String object – Date object – Boolean and Number Object –

document object – window object.

Unit V

Document Object Model (DOM): Modeling a document – Traversing and modifying a DOM

Tree – DOM collections and Dynamic styles.

Events: Registering Event Handlers – onload - onmousemove, the event Object and this – on mouseover

and on mouseout – onfocus and onblur – form processing with onsubmit and onreset – event bubbling

and other events.

XML: Basics – structuring Data – XML Name Spaces – Document Type Definations – W3C

XML schema documents – XML Vocabularies – XSLT

Text Book:

1. ―Internet and World Wide Web – How to Program‖, H.M.Deitel, P.J.Deital, T.R.Nieto, Pearson

Education Asia – Addison Wesley Longman Pte Ltd.

Book for Reference:

1. ―Special edition using HTML‖, Mark R Brown and Jerry Honeycutt, Third edition

♣♣♣♣♣♣♣♣♣♣

Course Outcome:

Semester Course Title Course

Code

Course Outcome

V Web Design 7BCEE1B CO1 Understand the principles of

creating an effective web page,

including an in-depth consideration

of information architecture.

Become familiar with graphic

design principles that relate to web

design and learn how to implement

theories into practice.

CO2 Learn the language of the web:

HTML and CSS.

Learn CSS grid layout and flex box.

CO3 Learn techniques of responsive web

design, including media queries.

Develop skills in digital imaging

(Adobe Photoshop.)

CO4 Develop basic programming skills

using Java script.

Be able to embed social media

content into web pages.

CO5 Develop skills in analyzing the

usability of a web site.

Understand how to plan and

conduct user research related to

web usability.

Unit I

Mind Map

Introduction to HTML:

This language provides the format for specifying simple logical structure and links in a hypertext

document. As a markup language, special formatting commands are placed in the text describing how

the final version should appear. These formatted documents are interpreted by a Web browser which

uses the HTML code to format the page being displayed. Although most professionals use special

authoring tools to write HTML documents and to manage sites, developers of e-commerce sites and

applications need to know the nitty-gritty detail of HTML, and this is what you will study.

HTML has had several versions over the years. "HTML 2.0" was the first standard HTML

specification which was published in 1995. HTML 4.01 was a major version of HTML and it was

published in late 1999. Though HTML 4.01 version is widely used but currently we are having HTML 5

Introductio
n to

HTML,Mar

kup
Languages

Header
, Text

Styling,
Linking

Forms,
Linking,
Frames

Tables and
Formatting

Editing
HTML,Co

mmon Tags

Unordered
List, Nested

and
Ordered List

Horizontal
Rules and
Line Breaks

Formattin
g Text,
Special

Characters

Images

version which is an extension to HTML 4.01, and this version was published in 20121. This course will

take you through website creation using HTML5.

Markup Languages

HTML pages are created by tagging textual information with HTML markup. HTML markup

consists of tags, which appear inside angled brackets < and >

An example of an HTML tag is , which causes text to appear in bold. only notes where

text should begin to appear in bold, while the tag marks the end of the emboldening. Most HTML

tags have a corresponding end tag, which is specified by the name of the tag preceded by the / character.

So, to create the text:

Internet Commerce is great!

The text is marked up as:

Internet Commerce is great!

Another example of an HTML tag is <I>, which causes text to appear in italic. In HTML 4.01,

the <I> tag was used to render text in italics. However, this is not necessarily the case with HTML5.

Style sheets can be used to format the text inside the <I> element. This will be demonstrated later.

Note that tags are not case-sensitive. In other words, or are the same tag, both

specifying bold text.

Nesting HTML Tags

Text may be both bold and italicised. This is done by using both the and <I> tags. When

doing so, it is important to remember not to overlap HTML tags. In other words:

<I>Internet Commerce is great!</I>

is correct, but

<I>Internet Commerce is great!</I>

is wrong.

Overlapping tags is a common mistake. Although Web browsers are usually smart enough to

work out what is meant, it can lead to problems. Furthermore, for an HTML page to be considered valid

HTML, it must contain no overlapping tags.

To Do:

Read the section on "HTML Tags" in your textbooks.

Editing Html

This section covers the creation of an HTML page. You will need a Web browser and a text

editor. Use any text editor you wish to, but the following Activity descriptions will use Notepad++.

Notepad++ is a free Windows editor that also supports several programming languages. For example,

you will notice that HTML keywords are highlighted in different colors.

1. Open your Web browser. This sections' goal is to create a Web document that can be opened with

your browser.

2. Open Notepad++. It can be found by selecting Start, then All Programs, then Notepad++.

3. Type the following text into Notepad++: your name and the module number (CSC5003). Save this

file as start.txt.

4. Now load start.txt into the browser by dragging start.txt onto your browser.

5. The browser should now display the text contained in start.txt. (If it does not, make sure that you

have saved start.txt and that this is the file you are opening).

6. Once you have displayed start.txt, return to Notepad. Add the text "Internet Commerce", and save the

file again.

7. Return to the Web browser and reload the document (by using either by using the Refresh or Reload

toolbar buttons, or by selecting File/Open once again).

8. If you are able to see the new piece of text, you have successfully used Notepad to create your first

Web page.

Getting started with HTML

This Activity adds HTML tags to start.txt.

1. Open your file start.txt in Notepad.

2. Mark up the text "Internet Commerce" so that appears in bold. Do this by placing the tag in front

of the text, and at the end of the text, as shown below:

Internet Commerce

3. Save the file as start.html, since it contains some HTML formatting. Save the file with this new name

(using Save As). Note that saving it as start.htm is also accepted. Other than the obvious, the letter "L,"

there's not much of a difference between the two extensions. Most, if not all, web browsers and servers

will treat a file with an HTM extension exactly as it would a file with an HTML extension, and vice

versa1.

4. Load start.html in the Web browser. Internet Commerce should now appear in bold.

5. Return to Notepad and add more text, some of it in bold and others in italics. (Remember <I> is the

tag for italics) Save the document and reload it.

Common Tags

Although a number of HTML tags have been introduced that markup how text should be

displayed in a browser, a correct HTML document must always include certain structural tags. These

tags are<HTML>, <HEAD>, <BODY> and <TITLE>.

The <HTML> tag should be placed around the document's contents; this tells the browser that

the whole document is written in HTML. Like a person, all HTML documents have only one head and

one body. All the text of the HTML document should be inside either the head or the body. Roughly, the

<HEAD> holds information about the document itself, and the <BODY> holds the information that

should be displayed. The document's <TITLE> is given in the <HEAD>. The title is shown at the very

top of the browser (i.e. in the title bar) —not in the browser window itself.

The standard structure of an HTML document is:

<HTML>

<HEAD>

<TITLE>Text to appear in the title bar of the browser</TITLE>

</HEAD>

<BODY>The text to appear in the main browser window.

</BODY>

</HTML>

This format should always be used when writing HTML documents.

Note: students are often confused about the use of the <BODY> tag, and they often include multiple

body tags. This can lead to problems later on, so make sure to use only one <BODY> tag.

To Do: Read the section on HTML document structure in your textbooks.

Structuring your HTML document

In this Activity you will convert your file that contains a few HTML tags into a correctly

structured HTML document. Open start.htm in Notepad.

1. Add the <HTML> tag on the first line of the file (before anything else).

2. Add the </HTML> end tag on the last line of the file (after everything else).

3. Add the document header by adding a <HEAD> tag on the line underneath the <HTML> tag and the

</HEAD> tag on the line beneath that.

4. Between the opening and closing <HEAD> tags, add the <TITLE> and </TITLE> tags.

5. Enter the text "My first Web page" between the <TITLE> tags.

6. Underneath the </HEAD> tag, create the body of the document by entering the <BODY> tag.

7. At the bottom of the document, add the </BODY> tag just before the </HTML> tag.

8. Save the file.

If you have problems correctly formatting the file.

You are probably thinking that it looks the same as the previous document. However, if you look

closely at the title bar you should see that it now displays the words "My first Web page". The main

difference, however, is that the browser now has to do a lot less work to do, since the document informs

it of the HTML's structure.

Loading your HTML file on Tomcat

The previous chapter guided you through tomcat installation. Let us launch the start.html file

using the tomcat webserver. Make sure that your tomcat server has been started. Save start.html in the

folder my apps that you created within the web apps folder. Load start.html in your browser by typing

http://localhost:8888/myapps/start.html

Header

The DOCTYPE declaration defines the document type to be HTML. In HTML5 this is written as

<! DOCTYPE html>. The <!DOCTYPE> declaration helps the browser to display a web page correctly.

There are different document types on the web. To display a document correctly, the browser must know

both type and version. The doctype declaration is not case sensitive. All cases are acceptable:

Another set of HTML tags are the headings tags. These are <H1>, <H2>, <H3>, <H4>, <H5>

and <H6>. The text surrounded by the <H1> tag is displayed in a very large font size. Text surrounded

by the <H2> tag is displayed in a slightly smaller font size, and so on down to the <H6> heading tag.

You can use these tags to provide your page with a standard outline format. For example, the page

heading might be displayed using the <H1> tag, a section heading using <H2> and a sub-section

heading using <H3> and so on. Use HTML headings for headings only. Don't use headings to make text

BIG or bold.

Search engines use your headings to index the structure and content of your web pages. It is

important to use headings to show the document structure. Browsers automatically add some empty

space (a margin) before and after each heading.

Headings

1. Load format.htm in MS-Notepad.

2. Within the <head> tags, add <meta charset="UTF-8">. It does not matter whether it is below or after

the <title> tag.

3. Set up the page heading "Formatting text" and place the <H1> heading tags around it, in other words,

<H1>Formatting text</H1>.

4. Reload format.html in your browser. You will notice that the effect of the <H1> tag is to display the

text not only in an enlarged font size but also to include extra space above and below it. So you do not

need a
 or <P> tag as well.

5. Return to Notepad and use the <H2> tag to create a sub-heading for the page, "Paragraphs and line

breaks".

6. Add <hr> between ‗This‘ and ‗is‘.

7. Reload the document in your browser to check the HTML and you should have an output.

Text Styling

The HTML style attribute is used to add styles to an element, such as color, font, size, and more.

The HTML Style Attribute
Setting the style of an HTML element, can be done with the style attribute.

The HTML style attribute has the following syntax:

<tagname style="property:value;">

The property is a CSS property. The value is a CSS value.

Background Color

The CSS background-color property defines the background color for an HTML element.

<body style="background-color:powderblue;">

<h1>This is a heading</h1>

<p>This is a paragraph.</p>

</body>

Example

Set background color for two different elements:

<body>

<h1 style="background-color:powderblue;">This is a heading</h1>

<p style="background-color:tomato;">This is a paragraph.</p>

</body>

Text Color

The CSS color property defines the text color for an HTML element:

<h1 style="color:blue;">This is a heading</h1>
<p style="color:red;">This is a paragraph.</p>

Fonts

The CSS font-family property defines the font to be used for an HTML element:

 Example

<h1 style="font-family:verdana;">This is a heading</h1>

<p style="font-family:courier;">This is a paragraph.</p>

Text Size

The CSS font-size property defines the text size for an HTML element:

Example I

am Red I

am Blue

I am Big

You will learn more about CSS later in this tutorial.

Example

Set the background color for a page to powderblue:

Example

 Example

<h1 style="font-size:300%;">This is a heading</h1>

<p style="font-size:160%;">This is a paragraph.</p>

Text Alignment

The CSS text-align property defines the horizontal text alignment for an HTML element:

 Example

<h1 style="text-align:center;">Centered Heading</h1>

<p style="text-align:center;">Centered paragraph.</p>

 Linking

The <link> tag defines the relationship between the current document and an external resource.

The <link> tag is most often used to link to external style sheets or to add a favicon to your

website.

The <link> element is an empty element, it contains attributes only.

Example

Link to an external style sheet:
<head>
<link rel="stylesheet" href="styles.css">

</head>

Attributes

Attribute Value Description

crossorigin anonymous

use-credentials

Specifies how the element handles cross-origin

requests

href URL Specifies the location of the linked document

hreflang language_code Specifies the language of the text in the linked

document

media media_query Specifies on what device the linked document

will be displayed

referrerpolicy no-referrer Specifies which referrer to use when fetching
 no-referrer-when- the resource
 downgrade

 origin

 origin-when-cross-

 origin

 unsafe-url

https://www.w3schools.com/html/html_favicon.asp
https://www.w3schools.com/tags/att_link_href.asp
https://www.w3schools.com/tags/att_link_hreflang.asp
https://www.w3schools.com/tags/att_link_media.asp
https://www.w3schools.com/tags/att_iframe_referrerpolicy.asp

rel alternate Required. Specifies the relationship between the
 author current document and the linked document
 dns-prefetch

 help

 icon

 license

 next

 pingback

 preconnect

 prefetch

 preload

 prerender

 prev

 search

 stylesheet

sizes HeightxWidth

any

Specifies the size of the linked resource. Only

for rel="icon"

title

Defines a preferred or an alternate stylesheet

type media_type Specifies the media type of the linked document

Global Attributes

The <link> tag also supports the Global Attributes in HTML.

Event Attributes

The <link> tag also supports the Event Attributes in HTML.
link {

display: none;

}

Images

The tag is used to embed an image in an HTML page.

Images are not technically inserted into a web page; images are linked to web pages.

The tag creates a holding space for the referenced image.

The tag has two required attributes:

 src - Specifies the path to the image

 alt - Specifies an alternate text for the image, if the image for some reason cannot be displayed

Note: Also, always specify the width and height of an image. If width and height are not specified, the

page might flicker while the image loads.

Tip: To link an image to another document, simply nest the tag inside an <a> tag (see example

below).

Attributes

Example

How to insert an image:

https://www.w3schools.com/tags/att_link_rel.asp
https://www.w3schools.com/tags/att_link_sizes.asp
https://www.w3schools.com/tags/att_link_type.asp
https://www.w3schools.com/tags/ref_standardattributes.asp
https://www.w3schools.com/tags/ref_eventattributes.asp
https://www.w3schools.com/tags/tag_a.asp

Attribute Value Description

alt text Specifies an alternate text for an image

crossorigin anonymous

use-credentials

Allow images from third-party sites that allow

cross-origin access to be used with canvas

height pixels Specifies the height of an image

ismap ismap Specifies an image as a server-side image map

loading eager

lazy

Specifies whether a browser should load an image

immediately or to defer loading of images until

some conditions are met

longdesc URL Specifies a URL to a detailed description of an

image

referrerpolicy no-referrer Specifies which referrer information to use when
 no-referrer- fetching an image
 when-downgrade

 origin

 origin-when-

 cross-origin

 unsafe-url

sizes sizes Specifies image sizes for different page layouts

src URL Specifies the path to the image

srcset URL-list Specifies a list of image files to use in different

situations

usemap #mapname Specifies an image as a client-side image map

width pixels Specifies the width of an image

Global Attributes

The tag also supports the Global Attributes in HTML.

Event Attributes

The tag also supports the Event Attributes in HTML.

Example Global Attributes

The tag also supports the Global Attributes in HTML.

Event Attributes

The tag also supports the Event Attributes in HTML.

Formatting Text

HTML contains several elements for defining text with a special meaning.

This text is bold

This text is italic

https://www.w3schools.com/tags/att_img_alt.asp
https://www.w3schools.com/tags/att_img_height.asp
https://www.w3schools.com/tags/att_img_ismap.asp
https://www.w3schools.com/tags/att_img_loading.asp
https://www.w3schools.com/tags/att_img_longdesc.asp
https://www.w3schools.com/tags/att_img_referrepolicy.asp
https://www.w3schools.com/tags/att_img_src.asp
https://www.w3schools.com/tags/att_img_usemap.asp
https://www.w3schools.com/tags/att_img_width.asp
https://www.w3schools.com/tags/ref_standardattributes.asp
https://www.w3schools.com/tags/ref_eventattributes.asp
https://www.w3schools.com/tags/ref_standardattributes.asp
https://www.w3schools.com/tags/ref_eventattributes.asp

HTML Formatting Elements

Formatting elements were designed to display special types of text:

 - Bold text

 - Important text

 <i> - Italic text

 - Emphasized text

 <mark> - Marked text

 <small> - Smaller text

 - Deleted text

 <ins> - Inserted text

 <sub> - Subscript text

 <sup> - Superscript text

HTML and Elements

The HTML element defines bold text, without any extra importance.

 Example

This text is bold
The HTML element defines text with strong importance. The content inside is typically

displayed in bold.

 Example

This text is important!

HTML <i> and Elements

The HTML <i> element defines a part of text in an alternate voice or mood. The content inside is

typically displayed in italic.

Tip: The <i> tag is often used to indicate a technical term, a phrase from another language, a thought, a

ship name, etc.

 Example

<i>This text is italic</i>
The HTML element defines emphasized text. The content inside is typically displayed in

italic.

Tip: A screen reader will pronounce the words in with an emphasis, using verbal stress.

 Example

This text is emphasized

HTML <small> Element

The HTML <small> element defines smaller text:

 Example

<small>This is some smaller text.</small>

HTML <mark> Element

The HTML <mark> element defines text that should be marked or highlighted:

 Example

<p>Do not forget to buy <mark>milk</mark> today.</p>

HTML Element

The HTML element defines text that has been deleted from a document. Browsers will

usually strike a line through deleted text:

 Example

<p>My favorite color is blue red.</p>

HTML <ins> Element

The HTML <ins> element defines a text that has been inserted into a document. Browsers will

usually underline inserted text:

This is subscript and superscript

 Example

<p>My favorite color is blue <ins>red</ins>.</p>

HTML <sub> Element

HTML <sub> element defines subscript text. Subscript text appears half a character below the

normal line, and is sometimes rendered in a smaller font. Subscript text can be used for chemical

formulas, like H2O:

<p>This is _{subscripted} text.</p>

HTML <sup> Element

The HTML <sup> element defines superscript text. Superscript text appears half a character

above the normal line, and is sometimes rendered in a smaller font. Superscript text can be used for

footnotes, like WWW[1]:

<p>This is ^{superscripted} text.</p>

HTML Text Formatting Elements

Tag

<i>

<small>

<sub>

Description

Defines bold text

Defines emphasized text

Defines a part of text in an

Defines smaller text

Defines important text

Defines subscripted text

alternate

voice or

mood

<sup>

Defines superscripted text

Example

Example

https://www.w3schools.com/tags/tag_b.asp
https://www.w3schools.com/tags/tag_em.asp
https://www.w3schools.com/tags/tag_i.asp
https://www.w3schools.com/tags/tag_small.asp
https://www.w3schools.com/tags/tag_strong.asp
https://www.w3schools.com/tags/tag_sub.asp
https://www.w3schools.com/tags/tag_sup.asp

<ins>

Defines inserted text

Defines deleted text

<mark>

Defines marked/highlighted text

Special Characters,

Some characters are reserved in HTML and they have special meaning when used in HTML

document. For example, you cannot use the greater than and less than signs or angle brackets within

your HTML text because the browser will treat them differently and will try to draw a meaning related

to HTML tag.
Many mathematical, technical, and currency symbols, are not present on a normal keyboard.

To add such symbols to an HTML page, you can use the entity name or the entity number (a

decimal or a hexadecimal reference) for the symbol.

Example

Display the euro sign, €, with an entity name, a decimal, and a hexadecimal value:

<p>I will display €</p>

<p>I will display €</p>

<p>I will display €</p>

Will display as:

I will display €

I will display €

I will display €

HTML processors must support following five special characters listed in the table that follows.

Symbol Description Entity Name Number Code

" quotation

mark

" "

' apostrophe ' '

& ampersand & &

< less-than < <

https://www.w3schools.com/tags/tag_ins.asp
https://www.w3schools.com/tags/tag_del.asp
https://www.w3schools.com/tags/tag_mark.asp

Symbol Description Entity Name Number Code

> greater-than > >

Horizontal Rules

The <hr>tag creates a horizontal line in an HTML page. The <hr> element can be used to

separate content.

The HTML <meta>element is also meta data. It can be used to define the character set, and other

information about the HTML document. Other meta elements that can be used are <style> and <link>.

Line Breaks

The tag
 is used to start a new line.
is a standalone tag, that means there is no closing

</BR>tag. Note that
 does not place a line space between the two lines. To do that you need to use

the <P> paragraph tag. Do not forget to add the end tag </p> although most browsers will display

HTML correctly even if you forget the end tag. The tag <pre> defines preformatted text. The text inside

a <pre> element is displayed in a fixed-width font (usually Courier), and it preserves both spaces and

line breaks.

HTML Tip - How to View HTML Source

Have you ever seen a Web page and wondered "Hey! How did they do that?" To find out, right-

click in the page and select "View Page Source" (in Chrome) or "View Source" (in IE), or similar in

another browser. This will open a window containing the HTML code of the page.

Using headings, horizontal rules and meta tags

Paragraphs, Line Breaks and Preformatting

In this Activity you will use the <P> and
 tags to create line breaks in text. We will also

demonstrate the use of <pre>.

1. Load Notepad and begin a new HTML document.

2. Enter the usual structural HTML tags. Set the title to "Formatting text".

3. Within the body type in the following text exactly as it appears below. Not how ‗This is cool‘ has

been typed. Do not use any HTML tags to format it at this stage.

Users of HTML are sometimes surprised to find that HTML gives them little control over the

way that a page is displayed. It should be remembered that HTML was developed as a means of marking

up the structure of a document not as a way of determining its presentation. Formatting text to appear on

a Web page is therefore different from formatting text to appear in a printed document.

This

is

Cool.

4. Save the document as format.html in your myapps folder and load it in your browser to view it. Note

that ‗This is cool‘ is displayed without the line breaks.

5. Resize your browser and watch how the text is reformatted to fit in the resized browser window.

6. Return to Notepad and make the changes as shown in Figure 3.1.

7. Save the file again and load it in your browser to check your HTML. Resize the browser and watch

how the document is reformatted for the resized window.

Lists

In this Activity you will create a series of lists to practice your HTML list-building skills.

1. Load format.html in Notepad.

2. Underneath the text, create three lists as follows:

a. List one should be a circled bulleted (i.e. unordered) list, using square bullets, giving the days

of the week.

b. List two should be a numbered list of the months of the year. Make the numbers lowercase

roman numerals.

c. List three should be a definition list of the four seasons.

3. Save the file and view it in your Web browser to ensure that it displays as desired.

4. Reload format.html in Notepad and create a new bulleted list showing the four seasons. Within each

season create a numbered sub list of the appropriate months of the year.

5. Save the file and load it in your Web browser to examine the document.

Unordered List

 Apple 1. Apples

 Oranges 2. Oranges

 Bananas 3. Bananas

The two examples above are lists. The list on the left uses bullets to mark the list elements, and is

known as an unordered list. The list on the right uses numbers to mark the list elements and is known

as an ordered list.

HTML lists consist of a list tag and list element tags.

In an unordered list, the list tag is and the list element tag is . Note that although the

list element end tag was optional in previous versions of HTML, it no longer is. The list end tag

 is also not optional.

To create an unordered list as in the above example, use the following HTML.

Apples

Oranges

Bananas

Note that it is useful to indent the tags on the page to keep track of the level of indentation. To add

more list elements, add extra list element tags containing the elements within the tags.

Nested and Ordered List

A style attribute can be added to an unordered list, to define the style of the marker:

Type Description

type="1" The list items will be numbered

with numbers (default)

type="A" The list items will be numbered

with uppercase letters

type="a" The list items will be numbered

with lowercase letters

type="I" The list items will be numbered

with uppercase roman numbers

type="i" The list items will be numbered

with lowercase roman numbers

For example,

<OL type = "i">

Apples

Oranges

Bananas

The description list, is different: it has neither bullets nor numbers. The description list tag is

<DL> and the list elements consist of a term and its definition. The term is marked by <DT> tags and

the definition by <DD> tags. An example use definition lists is the glossary definition that appears

below.

<DL>

<DT>HTML </DT>

<DD> Hypertext Markup Language; the format of Web documents </DD>

</DL>

Lists can be nested (lists inside lists). For example,

<OL type = "i">

Apples

Oranges

Bananas

 small bananas

 big bananas

Tables and Formatting

What is a Table?

A table is a grid organized into columns and rows, much like a spreadsheet. An example table is

shown below. This table consists of sixteen cells organized into rows and columns. But before beginning

to use tables in website design, we should consider the role that they fill.

Why do We Use Tables?

Tables were initially developed as a method to organize and display data in columns and rows.

This chapter discusses such tables. However, tables later became a tool for Web page layout, and as such

provide a possible solution for structured navigation. Frames may also be used to provide structured

navigation. However, the use of tables over frames is preferred for this purpose, as earlier Web browsers

(e.g. Netscape ver.1.0) do not support frames.

To Do

Read up about tables in your textbooks.

Creating a Data Table

Work through Activity 1 in order to understand how tables are created. Bear in mind that rarely

is anything achieved which satisfies all of the stated requirements in the first pass. The key to

developing perfect Web pages relies on that old adage: "Learn from your mistakes!"

Therefore, as long as a start is made, and mistakes are seen as a learning experience, then the design

process will eventually succeed.

Please feel free to experiment at any time. If you make mistakes but manage to correct them,

take encouragement from this.

Creating a Table

The objective of this Activity is to create a timetable for CSC5003 students to be displayed on a

Web page as shown below:

1. Begin a new Web page in your text editor. The header is shown below. When entering the text, try to

spot the deliberate mistake and correct it as necessary.

<HTML>

<HEAD>

<TITLE>

HTML Table Design

</HEAD>

</TITLE>

<BODY>

</BODY >

</HTML >

The correct code is given at the chapter's end.

1. Begin a new Web page in your text editor. The header is shown below. When entering the text, try to

spot the deliberate mistake and correct it as necessary.

<HTML>

<HEAD>

<TITLE>

HTML Table Design

</HEAD>

</TITLE>

<BODY>

</BODY >

</HTML >

The correct code is given at the chapter's end.

2. Save your file as tab_ex1.html

3. The next stage is to open the table. To open and close a table, use respectively the <TABLE> and

</TABLE> tags within the document's BODY.

<HEAD>

<TITLE>

HTML Table Design

</HEAD>

</TITLE>

<BODY>

<TABLE>

</TABLE>

</BODY >

</HTML >

4. Save the file and load it in your browser. At first you will notice a blank screen as the table is not

visible. A border and rows may be added to make the table visible. If you do not specify a border for the

table, it will be displayed without borders. When adding a border, its size can be defined in pixels, for

example: <TABLE border=10 style= ―width: 80%‖ >. Notice the use of the width attribute to set the

table to a width of 80% of the screen's size (this can also be defined in pixels). However, it is worth

noting that the border attribute is on its way out of the HTML standard! It is better to use CSS by first

creating a <style> tag within the <head> tag then leave using only the style attribute within the table tag.

‗td‘ stands for ‗tabular data‘ and ‗th‘ stands for ‗tabular header‘.

<style>

table, th, td {

border: 1px solid black;

}

</style>

…..

<TABLE style= ―width: 80%‖ >

5. The <TR> tag is used to add rows. Each row is composed of several data cells. Their dimensions can

be defined using width and height attributes: <TD width=25% height=20 bgcolor="darkred"> Notice

that the cell's colour can also be defined. Try to create the table below before you look at the solution

code under Discussion and Answers at the end of the chapter.

Table with one row and two columns

6. Reopen the file tab_ex1.html in your text editor and make the following amendments to <TABLE>

and <tr> tags. Note the <CENTER> tag centers the table horizontally and it also centers the text within

each cell in the row.

<TABLE style= "width: 80%" align = "center">

<tr align = "center">

7. Save this file as tab_ex2.html and view it in your browser. It should look as below.

Table with centered text

8. We can see that the text is still not given any specific font. HTML tag is deprecated in

version 4.0, onwards (hence it is not supported in HTML5) and now all fonts are set by using CSS. Try

to assign the Comic Sans MS font by making the following addition to the style section. Save the file as

tab_ex4.html.

font-family: Comic Sans MS;

This sets all the text in in each cell to have the same font. What if you want to have different

fonts in each cell? To do this, you can use the <p style > tag within each <TD> tag. Modify your <TD>

tags to the following:

<TD width=25% height=70 bgcolor="red"><p style="font-family: verdana">red cell </p></td>

<TD width=75% bgcolor="lightblue"><p style="font-family: Comic Sans MS"> light blue cell

</p></td>

9. To add a caption to a table use the <caption> tag within the <table> body. This caption appears on top

of the table. Add the caption ―Tabling‖ to your table thus:

<caption> Tabling </caption>

10. Save the file as tab_ex3.html and view it in your browser. It should look as below.

Table with caption and text with different font

11.In order to meet the objective of this Activity — that is, to create a timetable for CSC5003 — use the

HTML code in the next page. Save this as tab_ex4.html. One extra HTML tag needs to be introduced:

the TH tag, which inserts a table header cell. It is similar to the TD tag and has the same attributes (i.e.

align, bgcolor, height etc.). However, TH is used to set the cell's text apart from the rest of the table's

text, usually setting it bold and slightly larger. Now that you have completed Activity 1, you should have

a good idea of how to create a basic data table.

<HTML><HEAD><TITLE>HTML Table Design </TITLE><style>table, th, td { border: 1px solid

black; } </style></HEAD><BODY><TABLE style= "width: 80%" align = "center"><caption>CSC503

timetable </caption><tr ><td width=50%></td><th width = 150>Monday </th><th width =

150>Tuesday</th><th width = 150>Wednesday </th><th width = 150>Thursday</th><th width =

150>Friday</th></tr><tr ><td >6-7pm </td><td >Look at website</td><td >free </td><td

>Implementation </td><td >free </td><td >free </td></tr><tr ><td

>7-8pm </td><td >Take some notes</td><td >free </td><td >Implementation </td><td >free

</td><td >free </td></tr></TABLE></BODY >

</HTML >

Here are instructions on how to organise and display data in a table:

1. Insert the <TABLE> tag and decide on the table's dimensions (if required)

2. Add a row using the <TR> tag

3. In the newly created row, insert a cell <TD> with the necessary dimensions and other attributes

4. Add the data to be displayed

5. Terminate the data cell </TD>

6. Repeat steps 3-5 as necessary

7. Terminate the row </TR>

8. Repeat steps 2-7 until all the necessary rows have been added

9. Terminate the table </TABLE>

To Do

Look up the basic table structure in your textbooks and on the Internet. Draw up a list of the tags

for your own use and reference.

Check your list against this one:

HTML tag

<TABLE></TABLE>
Comments

Table definition and end tag

<CAPTION></CAPTION> Caption definition and end tag

<TR></TR> Row definition and end tag

<TD></TD> Cell definition and end tag

HTML Color Table

This Activity's objective is to write the HTML code to display the following table. Feel free to add more

colors.

To Do

Read up on 'Spanning Rows and Columns' and 'Table Appearance and Colours' in your

textbooks. Add the new tags to your list of table related tags.

Using Tables in Page Design

Tables are useful for laying out text and images on in Web page. Before continuing with

instructions on how to do this, let us first consider why there is a need to manage layout.

It is important to realise that it is not a monitor's absolute size that is usually of interest, but rather its

screen resolution.

While a Web browser can manage to layout a document at any resolution, different resolutions

do effect the layout and presentation of an HTML document. Resolution is measured in picture

elements, called pixels. Typical monitor resolutions are 640x480, 800x600, 1024x870, 1280x1024 and

1600x1200.

Resolution and monitor size are independent of one another: a large monitor can have a low

resolution, while a small monitor may have a high resolution. Resolution is determined by the hardware,

the user, and the video card driver installed on the computer. A single monitor may have a choice of

resolutions.

There is also the issue of a browser's 'live space'. Live space refers to the browser area the Web

page is displayed in. This can vary from user to user, as the toolbars and status bars the user chooses to

have displayed in the browser will reduce or increase the live space available to a Web page.

It is for all these reasons that the dichotomy between fixed and flexible Web page design has

occurred.

By default, all Web pages are designed with flexibility in mind. Flexibility can be defined as a Web

page's ability to resize and adapt to the available resolution, monitor and window sizes. Such an

approach has both advantages and disadvantages.

Advantages:

• Default Setting: therefore no new tags are needed — the Web page fills entire space.

• Philosophical: flexibility is the philosophy of the Web i.e. it should be accessible by the greatest

number of users.

• Realistic: resolutions, monitor and window sizes are always different. Keeping aWeb page flexible

allows it to be viewed on many available formats.

Disadvantages:

• Uncomfortable: reading text on large monitors is uncomfortable as the lines are too long.

• Unpredictability: the designer often cannot predict how a Web page will appear under varying

resolutions and live space sizes.

• Coherence: on small monitors, everything may not appear correctly

Forms

Forms are best learnt using a hands on approach. To become proficient with HTML forms you

need to create many, sorting out the problematic nuances as you go along. Therefore, the main content

of the unit is a series of sections: the first is a short introduction to HTML forms; the second discusses

each form element, and involves some textbook study. (You may find it more convenient to postpone

activities until you have covered all the form elements).

This introduction covers the main form elements. It also explains the process that occurs when a

form is submitted. The main elements of forms are: Text fields; Password fields; Text areas; Radio

buttons; Check boxes; Menu buttons and scrolling lists; Submit and reset buttons; and file picker.

HTML5 defines a number of new input types that can be used in forms. Examples are Email address

fields; web address fields; numbers as spin boxes and sliders; date pickers; search boxes; color pickers;

form validation; and required fields.

Processing Forms

Although forms could simply be used to display information, HTML provides them in order to

supply a way for the user to interact with a Web server. The most widely used method to process the

data submitted through a form is to send it to server-side software typically written in a scripting

language, although any programming language can be used. The figure below outlines the kind of

processing that takes place.

1. The user retrieves a document containing a form from a Web server.

2. The user reads the Web page and interacts with the form it contains.

3. Submitting the form sends the form data to the server for processing.

4. The Web server passes the data to a CGI programs.

5. The CGI software may use database information or store data in a server-side database

6. The CGI software may generate a new Web page for the server to return to the user.

7. The user reads the new Web document and may interact with it.

Typically, form data is sent to a server (or to an email address) as a sequence of pairs, each pair

being made up of a name and an associated value. The method that this data uses to arrive at its

destination depends on the data encoding. Normally the pairs will be sent as binary-encoded characters,

making them straightforward to process by software, and easy to read by humans. For example, an on-

line store selling used computer parts might use a form when ordering second-hand disk drives; the form

would send to the server for processing information identifying the manufacturer, the model name, and

maybe quote price thus:

manufacturer=syquest&model=ez135&price=45

This text represents a sequence of three name/value pairs. The names are manufacturer, model

and price, and their associated values are syquest, ez135 and 45. There is nothing special about the

names chosen or the way values are written, except that what is sent depends entirely on what the CGI

software expects. If it expected maker, item, and cost, then the data from submitting the form would

have to be:

maker=syquest&item=ez135&cost=45

Quite simply, whatever the processing software expects determines what the HTML form must

provide. Often the same person or team develops both form and CGI software, so this is usually of little

concern.

Because of the standard way in which the server-side software that process form data is supplied

with data, such software is usually referred to as a Common Gateway Interface (CGI) script. Quite often

CGI scripts on Unix servers are written in a language called Perl, but languages such as Python are

becoming popular; when complex or fast processing is required, C, C++ or Java may use.

To avoid server side programming when developing forms, and to avoid depending on scripts

that may require considerable study, we will mostly use a different method of processing form

information: email. In fact, it is very useful to submit form data to an email address, particularly in

situations when the data should be seen by a human before being processed by software.

Creating Forms

This section explores the main elements found on HTML forms. This is done in a manner

matching the way many people develop forms — a little bit at a time. The discussion of each form

element involves both reading from your textbook as well as a practical activity. (Some of the activities

will take considerable time.) You may prefer to postpone doing Activities 1-7 until you have reached the

end of the section on submit and reset buttons.

Starting a Form

All forms start with the <FORM> tag and end with </FORM>. All other form objects go

between these two tags.

The form tag has two main properties: METHOD and ACTION.

METHOD refers to post or get. The post attribute will send the information from the form as a text

document. The get attribute is used mostly with search engines, and will not be discussed. We will

generally set METHOD="post".

ACTION usually specifies the location of the CGI script that will process the form data. We are

not using CGI scripts, and are instead setting this attribute to an imaginary email address (which causes

the form data to be emailed to that address).

ACTION="mailto:put.your@email.address.here"

mailto:put.your@email.address.here

Putting these together gives us:

<FORM METHOD="post" ACTION="mailto:put.your@email.address.here"></FORM>

To Do

Read about Forms in your textbooks.

Scripts, and are instead setting this attribute to an imaginary email address (which causes the

form data to be emailed to that address).

ACTION="mailto:put.your@email.address.here"

Putting these together gives us:

<FORM METHOD="post" ACTION="mailto:put.your@email.address.here"></FORM>

To Do

Read about Forms in your textbooks.

Radio Buttons

Radio buttons are often used on questionnaires to indicate a person's opinion, or their likes and

dislikes. They can also be used for 'yes' or 'no' responses. Radio buttons should be used when only one

answer from a set of possible answers may be chosen. This is best illustrated by example:

This is achieved with:

Do you like chocolate?

<input type="radio" name="chocolate" value="yes">Yes

<input type="radio" name="chocolate" value="no">No

The tag and its attributes are as follows.

<input>is the tag used for most of the form objects.

type="radio" sets the object to a radio button.

name="orbits" labels the entire set of radio buttons. This makes identifying the data easier. For

example if the radio button was for the question 'Do you own an automobile?', you might set

name="automobile"

VALUE=... With a set of radio buttons for one question, it is not enough to provide a name only. We

need to give each radio button a value so that the form-processing software (CGI script or email) can

determine which radio button has been selected. This is where the value attribute comes in. Each of the

values above is set to the answer for that radio button. This information is sent with the data when the

form is submitted. Hence, the form in the above figure would submit orbits=strongly_agree.

CHECKED

mailto:put.your@email.address.here
mailto:put.your@email.address.here
mailto:put.your@email.address.here

This has not been used in the above example. If it were included, the button is set as if it had

been clicked. This is useful is one choice should be made the default.

To Do

Read about Radio Buttons in your textbooks.

Radio Buttons

In an HTML document, add these numbered questions and create radio buttons for them.

1. Do you like playing computer games? Yes / No

2. How much did you enjoy the 'Star Wars' Trilogy? I enjoyed it / I did not enjoy it / I have not seen it

3. Do you have an email address? Yes / No

4. Chocolate is delicious? strongly agree / agree / neutral / disagree / strongly disagree

5. Then create four more questions of your own choice that use radio buttons.

Checkboxes are one of the simplest objects that can be placed on a form. These input elements

can only be selected and de-selected. Unlike radio buttons, more than one can be selected at a time.

For example, when signing up for a free e-mail account with GMail [http://www.gmail.com] or

Hotmail [http://www.hotmail.com], a user may well have to fill in a series of forms. One of them is

often an interests form.

<INPUT TYPE="checkbox" NAME="autos" VALUE="yes">Autos

<INPUT TYPE="checkbox" NAME="business" VALUE="yes">Business & Finance

<INPUT TYPE="checkbox" NAME="movies" VALUE="yes">Movies

<INPUT TYPE="checkbox" NAME="music" VALUE="yes">Music

<INPUT TYPE="checkbox" NAME="computing" VALUE="yes">Computers & Internet

<INPUT TYPE="checkbox" NAME="science" VALUE="yes">Science

<INPUT TYPE="checkbox" NAME="sports" VALUE="yes">Sports

<INPUT>is the tag used for most of the form objects. type="checkbox" sets the object to a checkbox.

name is used to supply a name to the checkbox.

VALUE="yes" if the item is checked, this is the value that will be associated with the name when the

form is submitted for processing. Hence, in the above example, yes will be associated with each of the

name values movies, science and sports.

CHECKED

This has not been used in the above examples. If it were included as an attribute of the tag, the

check box would be set as if it had been clicked by the user. This is useful if one or more options are to

be offered as defaults.

Check Boxes

http://www.gmail.com/
http://www.hotmail.com/

Imagine you are developing a website that sells various types of watch. You want to allow

customers to select what they want to buy with a set of check boxes, as in the figure below.

Linking

Anchors

To link to another file use the link tag.

The term URL is the location of the file to be linked to. It could be on a hard or floppy disk — as

in

a:\filename.html or c:\my documents\week01\filename.html — on the same Web server, or on another

Web server, as in http://www.fortunecity.com/username/filename.html

Simple hypertext links

In this Activity you will create four new Web pages: index.html, filetwo.html, filethree.html and

filefour.html. You will then link them together using relative URLs.

1. Open Notepad and type in the HTML code shown below. (You may find it easier to cut and paste the

code from your Web browser into Notepad rather than enter it yourself.)

<HTML>

<HEAD>

<TITLE>File name</TITLE>

</HEAD>

<BODY>

<h2>File name</h2>

<p>

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam

nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam

erat volutpat. Ut wisi enim ad minim veniam, quis nostrud exerci

tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo

consequat.

<P>

Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse

http://www.fortunecity.com/username/filename.html

molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero

eros et accumsan et iusto odio dignissim qui blandit present luptatum zzril delenit augue duis dolore te

feugait nulla facilisi.

<P>

Homepage

Filetwo

Filethree

Filefour
</BODY>

</HTML>

2. Save this file as index.htm. Save the file a further three times using the file names from the list above.

Each time also revise file name in the HTML title and body.

3. You should now have four unique files that link to each other. Test these files in your browser by first

opening index.html.

4. Now add the following in index.htm to create a hyperlink to the University of Cape Town website.

<P>

University of Cape Town

5. Save the file and test it in your browser.

Linking to Email Addresses & other Non-Web Links

The previous examples have used the HTTP protocol to inform the browser to load a Web page

when you click a hyperlink. Various other protocols may be used. For example, to create a link to an

email address use the 'mailto' protocol. Note that this depends on the user's email programme being

correctly configured, and so may not always work. However, this feature is commonly used on the Web

to contact the webmaster or to get more information from sites.

The following anchor tag creates a mail link:

Email user

You can test this by providing your own email address. This was tested and works for a Gmail

address.

A subject line for the email message can also be provided:

user

Other protocols that can be used include: ftp://, news://, telnet:// and gopher://. These protocols

often require other software besides the Web browser, and, as with emails, if the software is not

correctly installed and configured the links will not work.

Linking to Sections within Documents

http://www.uct.ac.za/
mailto:username@address.com

Anchor tags can be used to link to a specific location within an HTML file (even within the same HTML

file).

Firstly, a location must be defined using the tag: with xxx being the

location name. A link to the location is created using the tag link. If the

location is in another document, its file file name too must be included as well: link

Linking to sections within a document

This Activity sets up links to sections within the documents created by Activity 8

1. Open Notepad and load index.html.

2. Copy the following text twice into the body of the file above the hyperlinks in order to create a long

file. Rename section two to section three when copying it for the second time.

Section two

<P>

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam

nonummy nibh euismod tincidunt ut laoreet dolore magna aliquamerat volutpat. Ut wisi enim ad minim

veniam, quis nostrud exerci

tation ullamcorper suscipit lobortis nisl ut aliquip ex ea commodo

consequat..

<P>

Duis autem vel eum iriure dolor in hendrerit in vulputate velit esse

molestie consequat, vel illum dolore eu feugiat nulla facilisis at vero

eros et accumsan et iusto odio dignissim qui blandit praesent

luptatum zzril delenit augue duis dolore te feugait nulla facilisi.

<P>

3. Now define the location section two by amending the text in the following way.

section two

4. Define the location section three in the same way. Save the file.

5. Save this file as filetwo.html, overwriting the previous file.

6. Re-open index.html and add the following hyperlinks to the top of the <body> section:

• Section Two

• Section Three

• File Two: Section Two

• File Two: Section Three

7. Ensure that the links work by reloading index.htm in your Web browser.

Targeting Windows

In modern Web browsers, anchor tags can specify target windows using the target window

attribute.

This specifies where the contents of a selected hyperlink should be displayed. It is commonly

used with frames or multiple browser windows, allowing the link to be opened in a specified frame or a

new browser window. Windows may have names defined for them, but the underscore should not be

used for the first character of any target defined in your documents. Such names are reserved for four

special target names:

_blank The browser always loads a

target="_blank" linked document

in a newly opened, unnamed

window.

_self This target value is the default for

all <A> tags that do not specify a

target. It causes the target

document to be loaded and

displayed in the same

frame window as the source

document.

_parent This one is useful for framed sites

to create navigation links back to

the parent window.

_top _top forces a break out of a

framed site, or to

take over the browser window.

That means, for

example, that if a site has be

linked to from within

a framed site, clicking on the link

only brings up

the site inside the frame. The _top

target attribute

forces the link to take over the

entire browser window.

Frames.

The basic frames are deprecated in HTML5 and are out of use. The frameset tag and its helper

tags frame/noframes are removed from the modern HTML5 standard. The basic frames had this markup:

<FRAMESET COLS="20%,80%">

<FRAME src=left.html>

<FRAME src=right.html>

</FRAMESET>

This sets up the frameset to consist of two frames in two columns. The first frame takes 20% of

the browser window and the second 80%. A file called left.html will appear in one frame and a file

called right.html in the other. In order to view the framed page in your browser you will need to create

these two pages.

HTML5 incorporates the inline frame element, iframe, which is a HTML page embedded into the

current page.

iframes Elements

Web page with one or multiple frames

Create a web page with a single Frame

This Activity sets up a webpage with a single frame.

1. Open a text editor, such as Notepad, and enter the <HEAD> and <BODY> portions of an HTML

page.

2. Use the HTML code below to lay out the page with one frame that embeds the UCT website:

<iframe src="http://www.uct.ac.za/"></iframe>Save this page as frame1.html and load it in your web

browser.

Create a web page with a multiple frames

This Activity sets up a webpage with two frames.

1. Open a text editor, such as Notepad, and enter the <HTML> and <BODY> portions of an HTML

page.

<iframe src="right.html"></iframe>

<iframe src="left.html"></iframe>

Save this page as frame2.html.

2. Begin another document and enter the following code. Enter the following code:

<BODY>This is the left frame</BODY>

http://www.uct.ac.za/

Save this file as left.html in the same folder as file2.html.

3. Begin another document and enter the following code. Save this as right.html. Note that the bgcolor

tag was deprecated in HTML5 and now we use the CSS style.

<head>

<style>

BODY

{

background-color:blue;

}

</style>

</head>

<BODY>

This is the right frame with a blue background

</BODY>

4. Now, load frame2.html in your Web browser. You should see that both frames, with the two files

loaded in them as appropriate.

Set Width and Height

Use the height and width attributes to specify the size.

The attribute values are specified in pixels by default, but they can also be in percent (like

"80%"), for example:

<iframe src="right.html" width = 200 height = 100></iframe>

Remove the Border

By default, an iframe has a black border around it.

To remove the border, add the style attribute and use the CSS border property:

<iframe src="right.html" style = "border:none"></iframe>

Use iframe as a Target for a Link

An iframe can be used as the target frame for a link.

Target iframe

1. In this activity you will create a link that, when clicked, will open the UCT website in a frame.

2. Open frame2.html and make the following changes.

<iframe src="right.html" name = "right"></iframe>

<p>Go to UCT</p>

<p>Click on the link above to open UCT website in the right frame</p>

http://www.uct.ac.za/

3. Save the file and load in in your browser. Click on ‗Got to UCT‘ and the UCT website should load

within the right frame.

Advantages and disadvantages of iframes

The major disadvantages of using iframes are:

• Frames can make the production of a website complicated, although current software addresses this

problem.

• It is easy to create badly constructed websites using frames. The most common mistake is to include a

link that creates duplicate Web pages displayed within a frame.

• Search engines that reference a Web page only give the address of that specific document. This means

that search engines might link directly to a page that was intended to be displayed within a frameset.

• Users have become so familiar with normal navigation using tables, the back button, and so on, that

navigating through a site that uses frames can be a problem.

• The use of too many frames can put a high workload on the server. A request for, say, ten files, each 1

Kilobyte in size, requires a greater workload than a request for a single 10 Kilobyte file.

The advantages of HTML5 iframes include:

• The main advantage of frames is that it allows the user to view multiple documents within a single

Web page.

• It is possible to load pages from different servers in a single frameset.

To Do

Research iframes and their uses.Discuss the following topics with other students on the forum:

• The merits of designing a Web page with and without iframes.

• The alternatives to using iframes.

Try to cite some examples of good and poor website design using frames of your own.

Summary:

HTML is the universal markup language for the Web. HTML lets you format text, add graphics,

create links, input forms, frames and tables, etc., and save it all in a text file that any browser can read

and display.

Questions:

1. What is HTML?

2. What is a Tag in HTML?

3. What is the key difference between HTML Elements and Tags?

4. If you want to display some HTML data in a table in tabular format, which HTML tags will you

use?

5. What are Attributes in HTML?

6. What is an Anchor tag in HTML?

7. What are Lists in HTML?

UNIT II

Mind Map

Cascading Style Sheets:Introduction

The cascading style sheet standard supplies very powerful tools to control Web page formatting.

For instance, consider a university with many departments — each with their own individual design

criteria — that is producing a website. It is possible to create a hierarchy of style sheets that allows each

department's website to maintain formatting consistency with all the other university sites, while

allowing each department to deviate from the format where needed.

Introduction , Inline style ,

Embedded Style

Box Model and
Text Flow, Media
Types, Building a
Dropdown menu

Cascading Style

Sheets

Conflicting Style,
Linking External

Style Sheets

Positioning Elements, Backgrounds,
Element Dimension

The style sheet standard supported by modern browsers is called cascading style sheets, or

CSS.CSS files contain a set of rules for the formatting of HTML documents. An example is given

below:

<html>

<head>

<title>UCT MSc IT Example 1 on style sheets</title>

<style>

BODY {

font-family : "times new roman; margin-left : 20%;

margin-right: 20%; text-align : justify; background : ivory; color : black;

}

P {

text-indent : 2cm;

}

</style>

</head>

A style sheet is a collection of rules that describe the format of the HTML tags. In the above

example there are six rules describing the format of the BODYtag, and one rule for the P tag. There are

two ways:

to write style sheets: the technically easier rule-based approach, and an approach that procedurally

constructs a style sheet — such an approach is outside the scope of this unit, but feel welcome (if you

any spare time) to visit various sites on this topics such as this one[http://csgrs6k1.uwaterloo.ca/

~dmg/dsssl/tutorial/tutorial.html] or search on Google [http://www.google.com] for more

Below is a description of the rules used in the above example.

Body - bgcolor set to "ivory", left and right margins indented relatively by 20%, font set to "Times New

Roman" and text colour set to black.

P to indent the first line by and absolute value of two centimeters.

There are three parts to a style sheet rule,

http://csgrs6k1.uwaterloo.ca/
http://www.google.com/

Advantages of Style Sheets

1. Multiple Styles - A single document can be presented in multiple styles by using multiple style

sheets.

2. Re-styling - The use of style sheets (which are separate to the HTML files) allows the quick re-

styling of any document, without modifying the original HTML.

3. Documentmaintenance - The ability to re-style many documents allows us to easily make changes to

the appearance of many Web pages without separately editing each one.

4. Consistency - Style sheets guarantee consistency throughout website.

5. Optimal file size - The smaller the files the faster the download. Using style sheets can help minimize

file sizes, since, for example, every < font >tag, is defined in one place in a style sheet, rather than in

multiple places in the HTML file.

6. Style and structure - When first developed, HTML was only concerned with document markup and

not with the document's formatting. This eventually changed, with more and more functionality being

added to HTML to allow for formatting. With the introduction of style sheets, the HTML document is

again concerned only with structural document markup—all formatting is now placed in the style sheet.

Disadvantages of Style Sheets

1. Browser dependency - Style sheets format things slightly differently on different browsers.

Unfortunately, browsers have different support for HTML and style sheets. Newer browsers have

largely converged on HTML support so that HTML documents look the same across different browsers.

The state of style sheet support is somewhat worse, largely because style sheets are newer than HTML.

2. Old Browsers - Some very old browsers (such Netscape Navigator 2) do not support style sheets. All

in all, style sheets have only minor disadvantages, and should be used when developing websites.

To Do

Read up on style sheets on your text books. Can you see any advantages or disadvantages that

have not been presented here? Also use the Internet to find out more about the usage of style sheets.

Important Note about Rules

Notice in the given example howeach rule is separated by a semi-colon (;). If your code is not

working, ensure that the semi-colons are present.

There are three ways to apply the above CSS rules to an HTML file:

1. add them in-line to the HTML file itself, attached directly to the relevant HTML tag.

2. embed the rules into the HTML file

3. link the CSS file to the HTML file

Inline styles

In-Line styles are added to individual tags and are usually avoided. Like the FONT tag they clog

up HTML documents, making them larger and increasing their download times.

An example of an in-line style is given below:

<P style="text-indent: 2cm; color:darkred;">

This paragraph has been formatted using the in-line style command.

</P><P>

This paragraph has not been formatted using the in-line style command.

>/P>

Embedded Style Sheets

This method avoids duplication within a single HTML document. However, it still has its

drawbacks: every Web page on your site needs this embedded style sheet inserted; consequently any

updates to the style sheet have to be made to every HTML document that has the style sheet embedded

in it. We have already used embedded style sheets as they are the simplest to implement, here is another

example:

<html>

<head>

<title> University of Cape Town, Example on embedded style sheets</title>

<style> BODY {

font-family : "times new roman; margin-left : 20%;

margin-right: 20%; text-align : justify; background : ivory; color :

darkred;

}

P {

text-indent : 2cm;

}

h1,h2,h3{ color:red; margin-left:2cm

}

</style>

</head> </html>

This gives you all the advantages of style sheets: by changing a single value in one file the

format

change is propagated to all of the HTML documents linked to the style sheet. The style sheet is written

just as an embedded style sheet is, but, instead of inserting it in an HTML file, it is saved as a separate

file (usually with a .css extension). Each HTML document then imports the CSS file. There are two

ways to import a file:

Linking it

< link rel="stylesheet" href=" ..//pathname//stylesheet_filename.css" type="tex

Importing it

<style>

@import (http://pathname/stylesheet.css);

</style>

Conflicting Style

CSS properties end up competing with one another in where they need to appear in the

cascade hierarchy. To resolve such conflicts, you have CSS Cascade. The CSS Cascade is a way for

browsers to resolve conflicting CSS declarations.

1. Origin Precedence

(a) When in Conflict

Remember that, an HTML page is read sequentially from top to bottom. When there are two

different specified styles for an element, the declaration at the bottom wins. For external stylesheets,

consider it to be at the position of the declaration of the stylesheet. Because of this, for example, one

should always declare the user stylesheet after the Bootstrap stylesheet so that we can override any

bootstrap styles we want.

(b) When not in Conflict

When there are two different declarations for the same element but they focus on different

attributes, the styles simply merge, and the element displays properties of both the declarations.

In fact, whenever two declarations are not in conflict with each other, they merge.

http://pathname/stylesheet.css)%3B

There are 2 style declarations. The text-color is in conflict, but other styles are not, so, what will

be the output?

According to the rules, the colour, which is in conflict, is received from the bottom declaration.

The non-conflicting ones, like background colour, are received from the upper declaration.

2. Inheritance

A child element always inherits the styles of the parent element, unless declared otherwise

separately. Even here, if the declarations are not in conflict, they simply merge.

What will happen in the code above? This includes the application of both, the principles of origin

as well as inheritance.

As we can see, the text color is inherited from the parent element. The background color is

received from the styles of the box. There are 2 conflicting declarations for “box4”, both of which have

the same specificity (we will come to specificity in the next paragraph). So, the bottom declaration wins,

and the font-size becomes 1em.

As we can see, the text color is inherited from the parent element. The background color is

received from the styles of the box. There are 2 conflicting declarations for “box4”, both of which have

the same specificity(we will come to specificity in the next paragraph). So, the bottom declaration wins,

and the font-size becomes 1em.

3. Specificity

When two different selectors are used but both select the same element, the precedence is decided by

specificity rules. We can think of the specificity of an element as a 4-digit number, and the greater

number wins. The number is found in the following way:-

1. The thousands digit denotes the presence of inline styles.

2. The hundreds digit denotes the number of IDs specified in the declaration.

3. The tens digit denotes the number of classes specified in the declaration.

4. The one's digit denotes the number of HTML tags specified in the declaration.

Now, try to figure out what will happen in the following code:

Let's find the specificity scores for each element:

First box:

There are two selectors for the first box. One is using ―div >.box”, and the other is the inline style.

Let's compare their scores:

Using the rules above, the selector using inline styles gets a score of 1000.

The selector using ―div > .box” gets a score of 0011.

So, selector using inline style wins(since 1000>11), and the conflicting style, i.e., font-color,

should be purple. The other styles should simply merge.

Second box:

Again there are two selectors here, namely ―#b” and ―div > .box”.

“#b” gets a score of 0100, and ―div > .box” has score of 0011.

Again, as 100>11, the ID selector wins, although there are no conflicting declarations here.

Third box: There is only one selector ―div > .box”.

Fourth box: The ―div > .box” is common for this as well. The other one has two classes, and therefore

has a score of 0020.

Again, as 20>11, ―.box4.box” wins. Let's have a look at the output.

Note: You may find the inline style very powerful, and want to use it every time. However, using inline

styles is bad practice. The CSS styles should all be at one place, thus one should refrain from using inline

styles. Inline-styles are used the majority of the time when you want to quickly check how the element

looks with the style.

Linking External Style Sheets

CSS allows us to link external style sheets to our files. This helps us make changes to CSS

separately and improves the page load time. External files are specified in <link> tag inside <head> of

the document.

Syntax

The syntax for including external CSS is as follows.

<link rel="stylesheet" href="#location">

Example: The following examples illustrate how CSS files are embedded &miuns;

HTML file

<!DOCTYPE html>

<html>

<head>

<linkrel="stylesheet"type="text/css"href="style.css">

CSS file

h2 {

color: red;

}

div {

background-color: lightcyan;

}

Output

This gives the following output

</head>

<body>

<h2>Demo Text</h2>

<div>

This is demo text.

This is demo text.

This is demo text.

This is demo text.

This is demo text.

</div>

</body>

</html>

Example: HTML file

CSS file

p {

background: url("https://www.tutorialspoint.com/images/QAicon.png");

background-origin: content-box;

background-size: cover;

box-shadow: 0 0 3px black;

padding: 20px;

background-origin: border-box;

Output

This gives the following output −

<!DOCTYPE html>

<html>

<head>

<linkrel="stylesheet"type="text/css"href="style.css">

</head>

<body>

<h2>Demo Heading</h2>

<p>This is demo text. This is demo text. This is demo text. This is demo text. This is demo text. This is

demo text. This is demo text. This is demo text. </p>

</body>

</html>

http://www.tutorialspoint.com/images/QAicon.png
http://www.tutorialspoint.com/images/QAicon.png

Positioning Elements

The position property specifies the type of positioning method used for an element (static,

relative, fixed, absolute or sticky).

The position Property

The position property specifies the type of positioning method used for an element.

There are five different position values:

 static

 relative

 fixed

 absolute

 sticky

Elements are then positioned using the top, bottom, left, and right properties. However, these

properties will not work unless the position property is set first. They also work differently depending on

the position value.

position: static;

HTML elements are positioned static by default.

Static positioned elements are not affected by the top, bottom, left, and right properties.

An element with position: static; is not positioned in any special way; it is always positioned

according to the normal flow of the page:

This <div> element has position: static;

Here is the CSS that is used:

div.static {

position: static;

border: 3px solid #73AD21;

}

position: relative;

An element with position: relative; is positioned relative to its normal position.

Example

Setting the top, right, bottom, and left properties of a relatively-positioned element will cause it

to be adjusted away from its normal position. Other content will not be adjusted to fit into any gap left

by the element.

This <div> element has position: relative;

Here is the CSS that is used:

div.relative {

position: relative;

left: 30px;

border: 3px solid #73AD21;

}

position: fixed;

An element with position: fixed; is positioned relative to the viewport, which means it always

stays in the same place even if the page is scrolled. The top, right, bottom, and left properties are used to

position the element.

A fixed element does not leave a gap in the page where it would normally have been located.

Notice the fixed element in the lower-right corner of the page. Here is the CSS that is used:

div.fixed {

position: fixed;

bottom: 0;

right: 0;

width: 300px;

border: 3px solid #73AD21;

}

 This <div> element has position: fixed;

position: absolute;

An element with position: absolute; is positioned relative to the nearest positioned ancestor

(instead of positioned relative to the viewport, like fixed).

Example

Example

However; if an absolute positioned element has no positioned ancestors, it uses the document

body, and moves along with page scrolling.

Note: Absolute positioned elements are removed from the normal flow, and can overlap elements.

Here is a simple example:

This <div> element has position: relative;

This <div> element has position: absolute;

Here is the CSS that is used:

div.relative {

position: relative;

width: 400px;

height: 200px;

border: 3px solid #73AD21;

}

div.absolute {

position: absolute;

top: 80px;

right: 0;

width: 200px;

height: 100px;

border: 3px solid #73AD21;

}

position: sticky;

An element with position: sticky; is positioned based on the user's scroll position.

A sticky element toggles between relative and fixed, depending on the scroll position. It is

positioned relative until a given offset position is met in the viewport - then it "sticks" in place (like

position:fixed).

Example

Note: Internet Explorer does not support sticky positioning. Safari requires a -webkit- prefix (see

example below). You must also specify at least one of top, right, bottom or left for sticky positioning to

work.

In this example, the sticky element sticks to the top of the page (top: 0), when you reach its scroll

position.

div.sticky {

position: -webkit-sticky; /* Safari */

position: sticky;

top: 0;

background-color: green;

border: 2px solid #4CAF50;

}

Positioning Text in an Image

How to position text over an image:

Backgrounds

The CSS background properties are used to add background effects for elements.

 In these chapters, you will learn about the following CSS background properties:

CSS background-color

Example

 background-color

 background-image

 background-repeat

 background-attachment

 background-position

 background (shorthand property)

The background-color property specifies the background color of an element.

body {

background-color: lightblue;

}

With CSS, a color is most often specified by:

 a valid color name - like "red"

 a HEX value - like "#ff0000"

 an RGB value - like "rgb(255,0,0)"

Look at CSS Color Values for a complete list of possible color values.

Other Elements

You can set the background color for any HTML elements:

h1 {

background-color: green;

}

div {

background-color: lightblue;

}

p {

background-color: yellow;

}

Opacity / Transparency

The opacity property specifies the opacity/transparency of an element. It can take a value from

0.0 - 1.0. The lower value, the more transparent:

Example

The background color of a page is set like this:

Example

Here, the <h1>, <p>, and <div> elements will have different background colors:

https://www.w3schools.com/cssref/css_colors_legal.asp

Example

div {

background-color: green;

opacity: 0.3;

}

Note: When using the opacity property to add transparency to the background of an element, all of its

child elements inherit the same transparency. This can make the text inside a fully transparent element

hard to read.

Transparency using RGBA

If you do not want to apply opacity to child elements, like in our example above,

use RGBA color values. The following example sets the opacity for the background color and not the

text:

You learned from our CSS Colors Chapter, that you can use RGB as a color value. In addition to

RGB, you can use an RGB color value with an alpha channel (RGBA) - which specifies the opacity for

a color.

An RGBA color value is specified with: rgba(red, green, blue, alpha). The alpha parameter is a

number between 0.0 (fully transparent) and 1.0 (fully opaque).

Tip: You will learn more about RGBA Colors in our CSS Colors Chapter.

div {

background: rgba(0, 128, 0, 0.3) /* Green background with 30% opacity */

}

The CSS Background Color Property

Example

https://www.w3schools.com/css/css_colors.asp
https://www.w3schools.com/css/css3_colors.asp

 Element Dimension

The CSS height and width properties are used to set the height and width of an element.

The CSS max-width property is used to set the maximum width of an element.

This element has a height of 50 pixels and a width of 100%.

CSS Setting height and width

The height and width properties are used to set the height and width of an element.

The height and width properties do not include padding, borders, or margins. It sets the

height/width of the area inside the padding, border, and margin of the element.

CSS height and width Values

The height and width properties may have the following values:

 auto - This is default. The browser calculates the height and width

 length - Defines the height/width in px, cm etc.

 % - Defines the height/width in percent of the containing block

 initial - Sets the height/width to its default value

 inherit - The height/width will be inherited from its parent value

CSS height and width Examples

 This element has a height of 200 pixels and a width of 50%

Example

Set the height and width of a <div> element:

div {

height: 200px;

width: 50%;

background-color: powderblue;

}

 This element has a height of 100 pixels and a width of 500 pixels.

Sets the background color of an
element

background-color

Description Property

Example

Set the height and width of another <div> element:

https://www.w3schools.com/cssref/pr_background-color.asp

div {

height: 100px;

width: 500px;

background-color: powderblue;

}

Note: Remember that the height and width properties do not include padding, borders, or

margins! They set the height/width of the area inside the padding, border, and margin of the

element!

Setting max-width

The max-width property is used to set the maximum width of an element.

The max-width can be specified in length values, like px, cm, etc., or in percent (%) of the

containing block, or set to none (this is default. Means that there is no maximum width).

The problem with the <div> above occurs when the browser window is smaller than the width of

the element (500px). The browser then adds a horizontal scrollbar to the page.

Using max-width instead, in this situation, will improve the browser's handling of small

windows.

Tip: Drag the browser window to smaller than 500px wide, to see the difference between the two divs!

 This element has a height of 100 pixels and a max-width of 500 pixels.

Note: If you for some reason use both the width property and the max-width property on the same

element, and the value of the width property is larger than the max-width property; the max-

width property will be used (and the width property will be ignored).

div {

max-width: 500px;

height: 100px;

background-color: powderblue;

}

All CSS Dimension Properties

Property Description

Example

This <div> element has a height of 100 pixels and a max-width of 500 pixels:

height Sets the height of an element

max-height Sets the maximum height of an element

max-width Sets the maximum width of an element

min-height Sets the minimum height of an element

min-width Sets the minimum width of an element

width Sets the width of an element

Box Model and Text Flow

The CSS Box Model

In CSS, the term "box model" is used when talking about design and layout.

The CSS box model is essentially a box that wraps around every HTML element. It consists of:

margins, borders, padding, and the actual content. The image below illustrates the box model:

Explanation of the different parts:

 Content - The content of the box, where text and images appear

 Padding - Clears an area around the content. The padding is transparent

 Border - A border that goes around the padding and content

 Margin - Clears an area outside the border. The margin is transparent

The box model allows us to add a border around elements, and to define space between elements.

Example

Demonstration of the box model:

https://www.w3schools.com/cssref/pr_dim_height.asp
https://www.w3schools.com/cssref/pr_dim_max-height.asp
https://www.w3schools.com/cssref/pr_dim_max-width.asp
https://www.w3schools.com/cssref/pr_dim_min-height.asp
https://www.w3schools.com/cssref/pr_dim_min-width.asp
https://www.w3schools.com/cssref/pr_dim_width.asp

div {

width: 300px;

border: 15px solid green;

padding: 50px;

margin: 20px;

}

Width and Height of an Element

In order to set the width and height of an element correctly in all browsers, you need to know

how the box model works.

div {

width: 320px;

padding: 10px;

border: 5px solid gray;

margin: 0;

}

Here is the calculation:

320px (width)

+ 20px (left + right padding)

+ 10px (left + right border)

+ 0px (left + right margin)

= 350px

The total width of an element should be calculated like this:

Total element width = width + left padding + right padding + left border + right border + left

margin + right margin

The total height of an element should be calculated like this:

Total element height = height + top padding + bottom padding + top border + bottom border +

top margin + bottom margin

Example

This <div> element will have a total width of 350px:

Important: When you set the width and height properties of an element with CSS, you just set

the width and height of the content area. To calculate the full size of an element, you must also add

padding, borders and margins.

Exercise:

Set the width of the <div> element to "200px".

<style>

 {

 : ;

}

</style>

<body>

<div>

Lorem ipsum dolor sit amet,

consectetur adipiscing elit,

sed do eiusmod tempor incididunt

ut labore et dolore magna aliqua.

</div>

</body>

 Media Types

Introduced Media Types

The @media rule, introduced in CSS2, made it possible to define different style rules for

different media types.

Examples:

You could have one set of style rules for computer screens, one for printers, one for handheld

devices, one for television-type devices, and so on.

Unfortunately these media types never got a lot of support by devices, other than the print media type.

CSS3 Introduced Media Queries

Media queries in CSS3 extended the CSS2 media types idea: Instead of looking for a type of

device, they look at the capability of the device.

Media queries can be used to check many things, such as:

 width and height of the viewport

 width and height of the device

 Orientation (is the tablet/phone in landscape or portrait mode?)

 resolution

Using media queries are a popular technique for delivering a tailored style sheet to

desktops, laptops, tablets, and mobile phones (such as iPhone and Android phones).

Browser Support

The numbers in the table specifies the first browser version that fully supports

the @media rule.

Property

@media 21.0 9.0 3.5 4.0 9.0

Media Query Syntax

A media query consists of a media type and can contain one or more expressions, which resolve

to either true or false.

@media not|only mediatype and (expressions) {

CSS-Code;

}

The result of the query is true if the specified media type matches the type of device the

document is being displayed on and all expressions in the media query are true. When a media

query is true, the corresponding style sheet or style rules are applied, following the normal

cascading rules.

Unless you use the not or only operators, the media type is optional and the all type will

be implied.

You can also have different stylesheets for different media:

<link rel="stylesheet" media="mediatype and|not|only (expressions)"

href="print.css"> CSS3 Media Types

Value Description

all Used for all media type devices

print Used for printers

screen Used for computer screens, tablets, smart-phones etc.

speech Used for screenreaders that "reads" the page out loud

Media Queries Simple Examples

sheet.

One way to use media queries is to have an alternate CSS section right inside your style

The following example changes the background-color to lightgreen if the viewport is 480

pixels wide or wider (if the viewport is less than 480 pixels, the background-color will be pink):

Example

@media screen and (min-width: 480px) {

body {

background-color: lightgreen;

}

}

The following example shows a menu that will float to the left of the page if the viewport is 480

pixels wide or wider (if the viewport is less than 480 pixels, the menu will be on top of the content):

@media screen and (min-width: 480px) {

#leftsidebar {width: 200px; float: left;}

#main {margin-left: 216px;}

}

 Building a Dropdown menu

HTML Use any element to open the dropdown content, e.g. a , or a <button> element.

Use a container element (like <div>) to create the dropdown content and add whatever you want

inside of it.

Wrap a <div> element around the elements to position the dropdown content correctly with CSS.

CSS The .dropdown class uses position:relative, which is needed when we want the dropdown

content to be placed right below the dropdown button (using position:absolute).

The .dropdown-content class holds the actual dropdown content. It is hidden by default, and will

be displayed on hover (see below). Note the min-width is set to 160px. Feel free to change this. Tip: If

you want the width of the dropdown content to be as wide as the dropdown button, set the width to

100% (and overflow:auto to enable scroll on small screens).

Instead of using a border, we have used the CSS box-shadow property to make the dropdown

menu look like a "card".

The :hover selector is used to show the dropdown menu when the user moves the mouse over the

dropdown button.

Create a dropdown box that appears when the user moves the mouse over an element.

Example

<style>

.dropdown {

position: relative;

display: inline-block;

}

.dropdown-content {

display: none;

position: absolute;

background-color: #f9f9f9;

min-width: 160px;

box-shadow: 0px 8px 16px 0px rgba(0,0,0,0.2);

padding: 12px 16px;

z- index: 1;

}

.dropdown:hover .dropdown-content {

display: block;

}

</style>

<div class="dropdown">

Mouse over me

<div class="dropdown-content">

<p>Hello World!</p>

</div>

</div>

Dropdown Menu

Create a dropdown menu that allows the user to choose an option from a list:

This example is similar to the previous one, except that we add links inside the dropdown box

and style them to fit a styled dropdown button:

<style>

/* Style The Dropdown Button */

.dropbtn {

Example

Example

background-color: #4CAF50;

color: white;

padding: 16px;

font-size: 16px;

border: none;

cursor: pointer;

}

/* The container <div> - needed to position the dropdown content */

.dropdown {

position: relative;

display: inline-block;

}

/* Dropdown Content (Hidden by Default) */

.dropdown-content {

display: none;

position: absolute;

background-color: #f9f9f9;

min-width: 160px;

box-shadow: 0px 8px 16px 0px rgba(0,0,0,0.2);

z-index: 1;

}

/* Links inside the dropdown */

.dropdown-content a {

color: black;

padding: 12px 16px;

text-decoration: none;

display: block;

}

/* Change color of dropdown links on hover */

.dropdown-content a:hover {background-color: #f1f1f1}

/* Show the dropdown menu on hover */

.dropdown:hover .dropdown-content {

display: block;

}

/* Change the background color of the dropdown button when the dropdown content is shown */

.dropdown:hover .dropbtn {

background-color: #3e8e41;

}

</style>

<div class="dropdown">

<button class="dropbtn">Dropdown</button>

<div class="dropdown-content">

Link 1

Link 2

Link 3

</div>

</div>

Right-aligned Dropdown Content

Left

Right

If you want the dropdown menu to go from right to left, instead of left to right, add right: 0;

.dropdown-content {

right: 0;

}

Dropdown Image

How to add an image and other content inside the dropdown box.

Hover over the image:

<!DOCTYPE html>

<html>

<head>

<style>

.dropdown {

 position: relative;

 display: inline-block;

}

.dropdown-content {

Example

 display: none;

 position: absolute;

 background-color: #f9f9f9;

 min-width: 160px;

 box-shadow: 0px 8px 16px 0px rgba(0,0,0,0.2);

 z-index: 1;

}

.dropdown:hover .dropdown-content {

 display: block;

}

.desc {

 padding: 15px;

 text-align: center;

}

</style>

</head>

<body>

<h2>Dropdown Image</h2>

<p>Move the mouse over the image below to open the dropdown content.</p>

<div class="dropdown">

<div class="dropdown-content">

<div class="desc">Beautiful Cinque Terre</div>

</div>

</div>

</body>

</html>

Dropdown Navbar

How to add a dropdown menu inside a navigation bar.

<!DOCTYPE html>

<html>

<head>

<style>

ul {

 list-style-type: none;

 margin: 0;

 padding: 0;

 overflow: hidden;

 background-color: #333;

}

li {

 float: left;

}

li a, .dropbtn {

 display: inline-block;

 color: white;

 text-align: center;

 padding: 14px 16px;

 text-decoration: none;

}

li a:hover, .dropdown:hover .dropbtn {

 background-color: red;

}

li.dropdown {

 display: inline-block;

}

.dropdown-content {

 display: none;

 position: absolute;

 background-color: #f9f9f9;

 min-width: 160px;

 box-shadow: 0px 8px 16px 0px rgba(0,0,0,0.2);

 z-index: 1;

}

.dropdown-content a {

 color: black;

 padding: 12px 16px;

 text-decoration: none;

 display: block;

 text-align: left;

}

.dropdown-content a:hover {background-color: #f1f1f1;}

.dropdown:hover .dropdown-content {

 display: block;

}

</style>

</head>

<body>

Home

News

<li class="dropdown">

Dropdown

<div class="dropdown-content">

Link 1

Link 2

Link 3

</div>

<h3>Dropdown Menu inside a Navigation Bar</h3>

<p>Hover over the "Dropdown" link to see the dropdown menu.</p>

</body></html>

Summary:

CSS stands for Cascading Style Sheets. It is a language designed to specify the overall

appearance of WebPages as well as the appearance and structure of the text and elements such as images

and buttons on WebPages and their layout.

Questions:

1. What are Inline styles?

2. Explain Embedded Style Sheets?

3. Define Conflicting Style?

4. Explain about Linking External Style Sheets?

5. What are the Positioning Elements available in CSS? Explain it.

6. Explain CSS Backgrounds?

7. Define Element Dimension?

8. Describe Box Model and Text Flow?

9. Define Media Types?

10. Explain Building a Dropdown menu?

Unit III

Mind Map

Java Script: Introduction

Web browsers were originally designed to interpret HTML with two primary purposes: to render

documents marked up in HTML to an acceptable level of quality, and, crucially, to be able to follow

hyperlinks to resources. As the Web grew, so did the demand for more sophisticated Web content.

Among many other extensions, graphics, forms, and tables were added to the HTML standard. With the

exception of forms, there is nothing in HTML that supports interaction with the user. Given the ubiquity

of Web browsers, and the effort which millions of ordinary people have put into learning to use them,

they provide an almost universal starting point for interacting with complex systems, particularly

Java Script:
Introductio

n

Control
Structures
, If
Structure

Logical
Operator
s

Break And
Continue

Statement

While
Structur
e

Do/While
Structure

For
Structure
, Switch

Structure

Assignment
Operators

Increment
and

Decremen
t

Operators

commercial, Internet based systems. Hence the need for sophisticated interaction facilities within Web

browsers.

The main means for providing interactivity within HTML documents is the JavaScript

programming language. HTML documents can include JavaScript programs that are interpreted (i.e.

run) by the Web browser displaying the Web document. In a real sense, JavaScript allows a Web

document to interact with its environment — that is, with the browser that is displaying it. Ultimately, it

lets the Web document become more interactive, to the user's benefit. For example, the following

message could be given to a user when they submit a form with a missing field:

The above message can be shown with the following JavaScript code.

<SCRIPT>

window.alert('Error with form: You forgot to fill in the billing address!')

</SCRIPT>

The JavaScript code is contained within the <SCRIPT> and </SCRIPT> tags. Everything

between those tags must conform to the JavaScript standard (the standard itself is an ECMA

International standard, called ECMAScript). The above statement is an instruction to the browser

requesting that an alert box display the message "Error with form: You forgot to fill in the billing

address!".

This unit will later cover another way to include JavaScript in HTML documents. It is worth

noting for now that the <SCRIPT> tag can include a language attribute to ensure the browser interprets

the enclosed commands as JavaScript, since other languages have, in the past, been used (such as

VBScript, which is no longer used in new websites, and is supported by very few browsers). For

simplicity, we will use the attribute's default value (of JavaScript) by omitting the attribute from the

<SCRIPT> tag.

 Control Structures

Very often when you write code, you want to perform different actions for different decisions.

You can use conditional statements in your code to do this.

In JavaScript we have the following conditional statements:

 Use if to specify a block of code to be executed, if a specified condition is true

 Use else to specify a block of code to be executed, if the same condition is false

 Use else if to specify a new condition to test, if the first condition is false

 Use switch to specify many alternative blocks of code to be executed

 If Structure

Use the if statement to specify a block of JavaScript code to be executed if a condition is true.

Syntax

if (condition) {

// block of code to be executed if the condition is true

}

if (hour < 18) {

greeting = "Good day";

}

The else Statement

Use the else statement to specify a block of code to be executed if the condition is false.

if (condition) {

// block of code to be executed if the condition is true

} else {

// block of code to be executed if the condition is false

}

Example

Make a "Good day" greeting if the hour is less than 18:00:

Note that if is in lowercase letters. Uppercase letters (If or IF) will generate a JavaScript error.

The result of greeting will be:

Good day

if (hour < 18) {

greeting = "Good day";

} else {

greeting = "Good evening";

}

The else if Statement

Use the else if statement to specify a new condition if the first condition is false.

Syntax

if (condition1) {

// block of code to be executed if condition1 is true

} else if (condition2) {

// block of code to be executed if the condition1 is false and condition2 is true

} else {

// block of code to be executed if the condition1 is false and condition2 is false

}

if (time < 10) {

greeting = "Good morning";

} else if (time < 20) {

greeting = "Good day";

} else {

greeting = "Good evening";

}

Example

If the hour is less than 18, create a "Good day" greeting, otherwise "Good evening":

The result of greeting will be:

Good day

Example

If time is less than 10:00, create a "Good morning" greeting, if not, but time is less than 20:00, create a

"Good day" greeting, otherwise a "Good evening":

Do/While Structure

While Structure

Loops can execute a block of code as long as a specified condition is true.

The While Loop

The while loop loops through a block of code as long as a specified condition is true.

Syntax

while (condition) {

// code block to be executed

}

Example

In the following example, the code in the loop will run, over and over again, as long as a variable

(i) is less than 10:

while (i< 10) {

text += "The number is " + i;

i++;

}

The Do While Loop

The do while loop is a variant of the while loop. This loop will execute the code block once,

before checking if the condition is true, and then it will repeat the loop as long as the condition is true.

Grade

The result of greeting will be:

Example

If you forget to increase the variable used in the condition, the loop will never end. This will crash your

browser.

Syntax

do {

// code block to be executed

}

while (condition);

Example

The example below uses a do while loop. The loop will always be executed at least once, even

if the condition is false, because the code block is executed before the condition is tested:

do {

text += "The number is " + i;

i++;

}

while (i< 10);

Do not forget to increase the variable used in the condition, otherwise the loop will never end!

JavaScript Assignment Operators

Assignment operators assign values to JavaScript variables.

Operator Example Same As

= x = y x = y

+= x += y x = x + y

-= x -= y x = x - y

Example

*= x *= y x = x * y

/= x /= y x = x / y

%= x %= y x = x % y

**= x **= y x = x ** y

The addition assignment operator (+=) adds a value to a variable.

let x = 10;

x += 5;

Increment and Decrement Operators

The JavaScript Increment and Decrement Operators useful to increase or decrease the value by

1. For instance, Incremental operator ++ used to increase the existing variable value by 1 (x = x + 1).

The decrement operator – – is used to decrease or subtract the existing value by 1 (x = – 1).

For Structure

Loops can execute a block of code a number of times.

The syntax for both the increment and decrement operators in JavaScript is

 Increment Operator : ++x or x++

 Decrement Operator: –x or x–

Example

<!DOCTYPE html>

<html>

<head>

<title> Increment and Decrement Operators in JavaScript </title>

Assignment

Assignment operators are fully described in the JS Assignment chapter.

https://www.w3schools.com/js/js_assignment.asp

</head>

<body>

<script>

var x = 10, y = 20;

document.write("----INCREMENT OPERATOR EXAMPLE ---- ");

document.write("<br \> Value of x : "+ x); //Original Value

document.write("<br \> Value of x : "+ x++); // Using increment Operator

document.write("<br \> Value of x : "+ x + "<br \>"); //Incremented value

document.write("<br \>----DECREMENT OPERATOR EXAMPLE---- ");

document.write("<br \> Value of y : "+ y); //Original Value

document.write("<br \> Value of y : "+ y--); // using decrement Operator

document.write("<br \> Value of y : "+ y); //decremented value

</script>

</body>

</html>

JavaScript Prefix and Postfix

If you observe the above syntax, we can assign the JavaScript increment and decrement

operators either before operand or after the operand. When ++ or — is used before operand like: ++x, –x

then we call it as prefix, if ++ or — is used after the operand like: x++ or x– then we called it as postfix.

Let‘s explore the JavaScript prefix and postfix

1. ++i (Pre increment): It will increment the value of i even before assigning it to the variable i.

2. i++ (Post-increment): The operator returns the variable value first (i.e, i value) then only i value

will incremented by 1.

3. –i (Pre decrement): It decrements the value of i even before assigning it to the variable i.

4. i– (Post decrement): The JavaScript operator returns the variable value first (i.e., i value), then

only i value decrements by 1.

JavaScript Prefix and Postfix Example

This example will show you, How to use JavaScript Increment and Decrement Operators as the

Prefix and Postfix in JavaScript

<!DOCTYPE html>

<html>

<head>

<title>javascript prefix and Postfix </title>

https://www.tutorialgateway.org/javascript/

</head>

<body>

<script>

var x = 10, y = 20, a = 5, b= 4;

document.write("----PRE INCREMENT OPERATOR EXAMPLE ---- ");

document.write("<br \> Value of X : " + x); //Original Value

document.write("<br \> Value of X : "+ (++x)); // Using increment Operator

document.write("<br \> Value of X Incremented: " + x + "<br \>"); //Incremented value

document.write("<br \>----POST INCREMENT OPERATOR EXAMPLE --- ");

document.write("<br \> Value of Y : "+ y); //Original Value

document.write("<br \> Value of Y : "+ y++); // Using increment Operator

document.write("<br \> Value of Y Incremented: "+ y + "<br \>"); //Incremented value

document.write("<br \>----PRE DECREMENT OPERATOR EXAMPLE --- ");

document.write("<br \> Value of A : "+ a); //Original Value

document.write("<br \> Value of A : "+ --a); // using decrement Operator

document.write("<br \> Value of A Decremented: "+ a + "<br \>"); //decremented value

document.write("<br \>----POST DECREMENT OPERATOR EXAMPLE ---- ");

document.write("<br \> Value of B : "+ b); //Original Value

document.write("<br \> Value of B : "+ b--); // using decrement Operator

document.write("<br \> Value of B Decremented: "+ b + "<br \>"); //decremented value

</script>

</body>

</html>

JavaScript Loops

Loops are handy, if you want to run the same code over and over again, each time with a

different value.

Often this is the case when working with arrays:

Instead of writing:

text += cars[0] + "
";

text += cars[1] + "
";

text += cars[2] + "
";

text += cars[3] + "
";

text += cars[4] + "
";

text += cars[5] + "
";

You can write:

for (let i = 0; i<cars.length; i++) {

text += cars[i] + "
";

}

Different Kinds of Loops

JavaScript supports different kinds of loops:

 for - loops through a block of code a number of times

 for/in - loops through the properties of an object

 for/of - loops through the values of an iterable object

 while - loops through a block of code while a specified condition is true

 do/while - also loops through a block of code while a specified condition is true

The For Loop

The for loop has the following syntax:

for (statement 1; statement 2; statement 3) {

// code block to be executed

}

Statement 1 is executed (one time) before the execution of the code block.

Statement 2 defines the condition for executing the code block.

Statement 3 is executed (every time) after the code block has been executed.

for (let i = 0; i< 5; i++) {

text += "The number is " + i + "
";}

From the example above, you can read:

Statement 1 sets a variable before the loop starts (let i = 0).

Statement 2 defines the condition for the loop to run (i must be less than 5).

Statement 3 increases a value (i++) each time the code block in the loop has been executed.

Statement 1

Normally you will use statement 1 to initialize the variable used in the loop (let i = 0).

This is not always the case, JavaScript doesn't care. Statement 1 is optional.

You can initiate many values in statement 1 (separated by comma):

 Example

for (let i = 0, len = cars.length, text = ""; i<len; i++) {

text += cars[i] + "
";

}

And you can omit statement 1 (like when your values are set before the loop starts):

let i = 2;

let len = cars.length;

let text = "";

for (; i<len; i++) {

text += cars[i] + "
";

}

Example

Example

Statement 2

Often statement 2 is used to evaluate the condition of the initial variable.

This is not always the case, JavaScript doesn't care. Statement 2 is also optional.

If statement 2 returns true, the loop will start over again, if it returns false, the loop will end.

Statement 3

Often statement 3 increments the value of the initial variable.

This is not always the case, JavaScript doesn't care, and statement 3 is optional.

Statement 3 can do anything like negative increment (i--), positive increment (i = i + 15), or

anything else.

Statement 3 can also be omitted (like when you increment your values inside the loop):

let i = 0;

let len = cars.length;

let text = "";

for (; i<len;) {

text += cars[i] + "
";

i++;

}

Loop Scope

Using var in a loop:

var i = 5;

for (var i = 0; i< 10; i++) {

// some code

}

// Here i is 10

Using let in a loop:

If you omit statement 2, you must provide a break inside the loop. Otherwise the loop will never end.

This will crash your browser. Read about breaks in a later chapter of this tutorial.

Example

Example

let i = 5;

for (let i = 0; i< 10; i++) {

// some code

}

// Here i is 5

In the first example, using var, the variable declared in the loop redeclares the variable outside the loop.

In the second example, using let, the variable declared in the loop does not redeclare the variable

outside the loop.

When let is used to declare the i variable in a loop, the i variable will only be visible within the loop.

Switch Structure

The JavaScript switch statement is used to execute one code from multiple expressions. It is just

like else if statement that we have learned in previous page. But it is convenient than

if..else..if because it can be used with numbers, characters etc.

The signature of JavaScript switch statement is given below.

1. switch(expression){

2. case value1:

3. code to be executed;

4. break;

5. case value2:

6. code to be executed;

7. break;

8.

9.

10. default:

11. code to be executed if above values are not matched;

12. }

Let‘s see the simple example of switch statement in javascript.

1. <script>

2. var grade='B';

3. var result;

4. switch(grade){

5. case 'A':

6. result="A Grade";

Example

7. break;

8. case 'B':

9. result="B Grade";

10. break;

11. case 'C':

12. result="C Grade";

13. break;

14. default:

15. result="No Grade";

16. }

17. document.write(result);

18. </script>

Output of the above example

 B

Break and Continue Statement

The break statement "jumps out" of a loop.

The continue statement "jumps over" one iteration in the loop.

The Break Statement

You have already seen the break statement used in an earlier chapter of this tutorial. It was used

to "jump out" of a switch() statement.

The break statement can also be used to jump out of a loop:

for (let i = 0; i< 10; i++) {

if (i === 3) { break; }

text += "The number is " + i + "
";

}

In the example above, the break statement ends the loop ("breaks" the loop) when the loop

counter (i) is 3.

The Continue Statement

The continue statement breaks one iteration (in the loop), if a specified condition occurs, and continues

with the next iteration in the loop.

This example skips the value of 3:

Example

for (let i = 0; i< 10; i++) {

if (i === 3) { continue; }

text += "The number is " + i + "
";

}

JavaScript Labels

To label JavaScript statements you precede the statements with a label name and a colon:

label:

statements

The break and the continue statements are the only JavaScript statements that can "jump out

of" a code block.

Syntax:

break labelname;

continue

labelname;

The continue statement (with or without a label reference) can only be used to skip one loop

iteration.

The break statement, without a label reference, can only be used to jump out of a loop or a

switch.

With a label reference, the break statement can be used to jump out of any code block:

const cars = ["BMW", "Volvo", "Saab", "Ford"];

list: {

text += cars[0] + "
";

text += cars[1] + "
";

break list;

text += cars[2] + "
";

text += cars[3] + "
";

}

 Logical Operators

Example

Example

A code block is a block of code between { and }.

JavaScript Logical Operators

Operator Description

&& logical and

|| logical or

! logical not

JavaScript Type Operators

Operator

Description

typeof

Returns the type of a variable

instanceof

Returns true if an object is an instance of an object type

Summary:

At the end of this chapter you will be able to:

• Explain the differences between JavaScript and Java;

• Write HTML files using some basic JavaScript tags and objects.

Control Structures can be considered as the building blocks of computer programs. They are

commands that enable a program to ―take decisions‖, following one path or another. A program is

usually not limited to a linear sequence of instructions since during its process it may bifurcate, repeat

code or bypass sections.

Logical operators are fully described in the JS Comparisons chapter.

Type operators are fully described in the JS Type Conversion chapter.

https://www.w3schools.com/js/js_comparisons.asp
https://www.w3schools.com/js/js_type_conversion.asp

Questions:

1. Explain in briefly control structures?

2. Explain about Loop structure?

3. Explain about operators in JS?

4. Define break and continue statement?

Unit IV

Mind Map

Java Script Functions:

A JavaScript function is a block of code designed to perform a particular task.

Recursion,
Recursion

Vs
Iteration,

Global
Functions

Date
Object,
Boolean

and

Documen
t Object,
Window
Object

Java Script
Functions:
Programme

r Defined
Functions,
Function

Definitions

Duration Of
Identifiers,
Scope Rules

Java Script
Objects:

Math
Object,
String
Object

Sorting
Arrays,

Searching
Arrays,

Multiple-
subscripte

d Arrays

Java Script
Arrays:
Arrays,

Declaring And
Allocating

Arrays

References
And Reference

Parameters,
Passing Arrays
To Functions

A JavaScript function is executed when "something" invokes it (calls it).

JavaScript functions are used to perform operations. We can call JavaScript function many

times to reuse the code.

Advantage of JavaScript function

There are mainly two advantages of JavaScript functions.
1. Code reusability: We can call a function several times so it save coding.

2. Less coding: It makes our program compact. We don‘t need to write many lines of code each

time to perform a common task.

JavaScript Function Syntax

The syntax of declaring function is given below.

1. function functionName([arg1, arg2, ...argN]){

2. //code to be executed

3. }

JavaScript Functions can have 0 or more arguments.

 Example

function myFunction(p1, p2) {

return p1 * p2; // The function returns the product of p1 and p2

}

FunctionDefinitions

A JavaScript function is defined with the function keyword, followed by a name, followed by
parentheses ().

Function names can contain letters, digits, underscores, and dollar signs (same rules as variables).

The parentheses may include parameter names separated by commas:

(parameter1, parameter2, ...)

The code to be executed, by the function, is placed inside curly brackets: {}

function name(parameter1, parameter2, parameter3) {

// code to be executed

}

Function parameters are listed inside the parentheses () in the function definition.

Function arguments are the values received by the function when it is invoked.

Inside the function, the arguments (the parameters) behave as local variables.

Function Invocation

The code inside the function will execute when "something" invokes (calls) the function:

 When an event occurs (when a user clicks a button)

 When it is invoked (called) from JavaScript code

 Automatically (self invoked)

Function Return

When JavaScript reaches a return statement, the function will stop executing.

If the function was invoked from a statement, JavaScript will "return" to execute the code after the

invoking statement.

Functions often compute a return value. The return value is "returned" back to the "caller":

A Function is much the same as a Procedure or a Subroutine, in other programming languages.

let x = myFunction(4, 3); // Function is called, return value will end up in x

function myFunction(a, b) {

return a * b; // Function returns the product of a and b

}

Why Functions?

You can reuse code: Define the code once, and use it many times.

You can use the same code many times with different arguments, to produce different results.

function toCelsius(fahrenheit) {
return (5/9) * (fahrenheit-32);

}

document.getElementById("demo").innerHTML = toCelsius(77);

The () Operator Invokes the Function

Using the example above, toCelsius refers to the function object, and toCelsius() refers to the
function result.

Accessing a function without () will return the function object instead of the function result.

 Example

function toCelsius(fahrenheit) {

return (5/9) * (fahrenheit-32);

}

document.getElementById("demo").innerHTML = toCelsius;

Functions Used as Variable Values

Functions can be used the same way as you use variables, in all types of formulas, assignments, and
calculations.

Example

Calculate the product of two numbers, and return the result:

The result in x will be:

12

Example

Convert Fahrenheit to Celsius:

Example

Instead of using a variable to store the return value of a function:

let x = toCelsius(77);

let text = "The temperature is " + x + " Celsius";

let text = "The temperature is " + toCelsius(77) + " Celsius";

Local Variables

Variables declared within a JavaScript function, become LOCAL to the function.

Local variables can only be accessed from within the function.

 Example

// code here can NOT use carName

function myFunction() {

let carName = "Volvo";

// code here CAN use carName

}

// code here can NOT use carName

Since local variables are only recognized inside their functions, variables with the same name can be

used in different functions.

Local variables are created when a function starts, and deleted when the function is completed.

JavaScript Function Methods

Method Description

apply() It is used to call a function contains this value and a single array of arguments.

bind() It is used to create a new function.

call() It is used to call a function contains this value and an argument list.

toString() It returns the result in a form of a string.

Duration of Identifiers

An identifier is a sequence of characters in the code that identifies a variable, function, or

property. In JavaScript, identifiers are case-sensitive and can contain Unicode letters, $, _ , and digits

(0-9), but may not start with a digit.

Identifiers can be a combination of letters, numbers, special symbols, etc. But it must not

extend 31 characters. Hence, the maximum possible length of an identifier is 31 characters.

An identifier is a name that is given to entities like variables, functions, class, etc. Keywords

cannot be used as identifier names. For example, //invalid const new = 5; // Error!

You can use the function directly, as a variable value:

The JavaScript syntax defines two types of values:

 Fixed values

 Variable values

Fixed values are called Literals.

Variable values are called Variables.

JavaScript Literals

The two most important syntax rules for fixed values are:

1. Numbers are written with or without decimals:

10.50

1001

2. Strings are text, written within double or single quotes:

"John Doe"

'John Doe'

// How to create variables:

var x;

let y;

// How to use variables:

x = 5;

y = 6;

let z = x + y;

JavaScript Variables

In a programming language, variables are used to store data values.

JavaScript uses the keywords var, let and const to declare variables.

An equal sign is used to assign values to variables.

In this example, x is defined as a variable. Then, x is assigned (given) the value 6:

let x;

x = 6;

JavaScript Operators

JavaScript uses arithmetic operators (+ - * /) to compute values:
(5 + 6) * 10

JavaScript uses an assignment operator (=) to assign values to variables:

let x, y;

x = 5;

y = 6;

JavaScript Expressions

An expression is a combination of values, variables, and operators, which computes to a value.

The computation is called an evaluation.

For example, 5 * 10 evaluates to 50:

5 * 10

Expressions can also contain variable values:

x * 10

The values can be of various types, such as numbers and strings.

For example, "John" + " " + "Doe", evaluates to "John Doe":

"John" + " " + "Doe"

JavaScript Keywords

JavaScript keywords are used to identify actions to be performed.

The let keyword tells the browser to create variables:

let x, y;
x = 5 + 6;

y = x * 10;

The var keyword also tells the browser to create variables:

var x, y;

x = 5 + 6;

y = x * 10;

JavaScript Comments

Not all JavaScript statements are "executed".

Code after double slashes // or between /* and */ is treated as a comment.
Comments are ignored, and will not be executed:

let x = 5; // I will be executed

// x = 6; I will NOT be executed

JavaScript Identifiers / Names

Identifiers are JavaScript names.

Identifiers are used to name variables and keywords, and functions.

The rules for legal names are the same in most programming languages.

A JavaScript name must begin with:

 A letter (A-Z or a-z)

 A dollar sign ($)

 Or an underscore (_)

Subsequent characters may be letters, digits, underscores, or dollar signs.

In these examples, using var or let will produce the same result.

You will learn more about var and let later in this tutorial.

JavaScript is Case Sensitive

All JavaScript identifiers are case sensitive.

The variables lastName and lastname, are two different variables:

let lastname, lastName;

lastName = "Doe";

lastname = "Peterson";

JavaScript and Camel Case

Historically, programmers have used different ways of joining multiple words into one variable name:

Hyphens:

first-name, last-name, master-card, inter-city.

Underscore:

first_name, last_name, master_card, inter_city.

Upper Camel Case (Pascal Case):

FirstName, LastName, MasterCard, InterCity.

Lower Camel Case:

JavaScript programmers tend to use camel case that starts with a lowercase letter:

firstName, lastName, masterCard, interCity.

JavaScript Character Set

JavaScript uses the Unicode character set.

Unicode covers (almost) all the characters, punctuations, and symbols in the world.

Scope Rules

Block Scope

Before ES6 (2015), JavaScript had only Global Scope and Function Scope.
ES6 introduced two important new JavaScript keywords: let and const.

These two keywords provide Block Scope in JavaScript.

Variables declared inside a { } block cannot be accessed from outside the block:

Note

Numbers are not allowed as the first character in names.

This way JavaScript can easily distinguish identifiers from numbers.

Hyphens are not allowed in JavaScript. They are reserved for subtractions.

Scope determines the accessibility (visibility) of variables.

JavaScript has 3 types of scope:

 Block scope

 Function scope

 Global scope

 Example

{

let x = 2;

}

// x can NOT be used here

Variables declared with the var keyword can NOT have block scope.

Variables declared inside a { } block can be accessed from outside the block.

 Example

{

var x = 2;

}

// x CAN be used here

Local Scope

Variables declared within a JavaScript function, become LOCAL to the function.

 Example

// code here can NOT use carName

function myFunction() {

let carName = "Volvo";

// code here CAN use carName

}

// code here can NOT use carName

Since local variables are only recognized inside their functions, variables with the same name can be

used in different functions.

Local variables are created when a function starts, and deleted when the function is completed.

Function Scope

JavaScript has function scope: Each function creates a new scope.

Variables defined inside a function are not accessible (visible) from outside the function.

Variables declared with var, let and const are quite similar when declared inside a function.

They all have Function Scope:

function myFunction() {

var carName = "Volvo"; // Function Scope

}

Local variables have Function Scope:

They can only be accessed from within the function.

function myFunction() {

let carName = "Volvo"; // Function Scope

}

function myFunction() {

const carName = "Volvo"; // Function Scope

}

Global JavaScript Variables

A variable declared outside a function, becomes GLOBAL.

let carName = "Volvo";
// code here can use carName

function myFunction() {

// code here can also use carName

}

Global Scope

Variables declared Globally (outside any function) have Global Scope.

Global variables can be accessed from anywhere in a JavaScript program.

Variables declared with var, let and const are quite similar when declared outside a
block. They all have Global Scope:

var x = 2; // Global scope

let x = 2; // Global scope

const x = 2; // Global scope

JavaScript Variables

In JavaScript, objects and functions are also variables.

 Scope determines the accessibility of variables, objects, and functions from different parts of the code.

Automatically Global

If you assign a value to a variable that has not been declared, it will automatically become

a GLOBAL variable.

This code example will declare a global variable carName, even if the value is assigned inside a
function.

 Example
myFunction();

// code here can use carName

function myFunction() {

carName = "Volvo";

}

Example

A global variable has Global Scope:

All scripts and functions on a web page can access it.

Strict Mode

All modern browsers support running JavaScript in "Strict Mode".

You will learn more about how to use strict mode in a later chapter of this tutorial.

Global Variables in HTML

With JavaScript, the global scope is the JavaScript environment.

In HTML, the global scope is the window object.

Global variables defined with the var keyword belong to the window object:

var carName = "Volvo";

// code here can use window.carName

Global variables defined with the let keyword do not belong to the window object:

let carName = "Volvo";
// code here can not use window.carName

Warning

The Lifetime of JavaScript Variables

The lifetime of a JavaScript variable starts when it is declared.

Function (local) variables are deleted when the function is completed.

In a web browser, global variables are deleted when you close the browser window (or tab).

Function Arguments

Function arguments (parameters) work as local variables inside functions.

 Recursion

Recursion is the technique of making a function call itself. This technique provides a way to break

complicated problems down into simple problems which are easier to solve.

Recursion may be a bit difficult to understand. The best way to figure out how it works is to experiment

with it.

Recursion Example

Adding two numbers together is easy to do, but adding a range of numbers is more complicated. In the

following example, recursion is used to add a range of numbers together by breaking it down into the

simple task of adding two numbers:

Example

In "Strict Mode", undeclared variables are not automatically global.

Example

Do NOT create global variables unless you intend to.

Your global variables (or functions) can overwrite window variables (or functions).

Any function, including the window object, can overwrite your global variables and functions.

Example Explained

When the sum() function is called, it adds parameter k to the sum of all numbers smaller than k and
returns the result. When k becomes 0, the function just returns 0. When running, the program follows
these steps:

Since the function does not call itself when k is 0, the program stops there and returns the result.

Halting Condition

Just as loops can run into the problem of infinite looping, recursive functions can run into the problem of

infinite recursion. Infinite recursion is when the function never stops calling itself. Every recursive

function should have a halting condition, which is the condition where the function stops calling itself.

In the previous example, the halting condition is when the parameter k becomes 0.

It is helpful to see a variety of different examples to better understand the concept. In this example, the

function adds a range of numbers between a start and an end. The halting condition for this recursive

function is when end is not greater than start:

Example

Use recursion to add all of the numbers up to 10.

publicclassMain{

publicstaticvoidmain(String[]args){

int result =sum(10);

System.out.println(result);

}

publicstaticintsum(int k){ if(k

>0){

return k +sum(k -1);

}else{

return0

;

Example

Use recursion to add all of the numbers between 5 to 10.

publicclassMain{

 The developer should be very careful with recursion as it can be quite easy to slip into writing a function

 which never terminates, or one that uses excess amounts of memory or processor power. However, when

 written correctly recursion can be a very efficient and mathematically-elegant approach to programming.

Recursion Vs Iteration

Iteration

One of the most essential tools in control flow is the use of iterative statements. These iterative statements

typically come in the form of a:

 for statement

 for in statement

 for of statement

 while statement

 do…while statement

In these iterative statements, ―label statement‖, ―continue statement‖, and ―break statement‖ can

be used in conjunction to give further control of the loop behavior.

publicstaticvoidmain(String[]args){

int result =sum(5,10);

System.out.println(result);

}

publicstaticintsum(int start,int

end){ if(end > start){

return end +sum(start, end -1);

}else{

return

end;

Besides the above mentioned iterative statements, there are also iterative array methods, such as:

 forEach

 map

 filter

 reduce

What separates these from the previously mentioned, is that these iterative array methods require a

callback function. This is the fundamental difference in how these iterative array methods operate as

compared to the traditional iterative statements above as we will see when we take a look behind the

scenes.

Recursion

Now that we‘ve learned what an iteration is, let‘s take a look at recursions and how they differ.

Recursions describe the behavior of recursive functions, which is to invoke or call itself. A basic

comparison of iteration and recursion use for calculating factorial is shown below:

Side Note: Tail Call Optimization (TCO) is an optimization carried out by the compiler or engine

that allows the “loop” to continue without growing the stack. Even though ES6 came out with TCO as a

part of its new standard, all the major browsers have had a bumpy ride implementing it and as of now,

it’s been in limbo. That being said, it’s good to keep in mind how to convert one for TCO. Take a

look here for more details regarding its implementation history for JavaScript.

When recursive Factorial is called, the following takes place:

https://stackoverflow.com/questions/54719548/tail-call-optimization-implementation-in-javascript-engines

As we can see, besides the initial call to recursiveFactorial, it in itself is called an additional four times,

and after reaching the base case of n=== 1, it backtracks all the way, fulfilling each subsequent

computation to reach 120.

Before looking behind the code, let‘s concretely define the components of a recursive function. There are

two essential components that make a recursive function desirably functional: the recursion and the base

case.

The recursion is the part where the function is called, which in our factorial example would

be recursiveFactorial(n-1). Take note, that the function can be called in multiple places in itself, as well

as multiple times in the same expression with likely different arguments. That is technically enough to

make a function recursive, but it would be undesirable as it would crash with a stack overflow error.

The base case is where we define the stopping condition. In our factorial example, the base case

is if (n===1). Take note that there can be as many base cases as the algorithm requires.

Going Behind-the-Scenes

First, we need to understand that JavaScript is a single-threaded concurrent programming language. This

means that JavaScript does one thing at a time (JavaScript Runtime) and through a cooperative

relationship with the Web APIs, callback queue, and event loop allows ―multi-tasking‖ in the form of

scheduling.

Below shows the different components of JavaScript in action:

The JavaScript Runtime or the JavaScript engine (V8 for Chrome, SpiderMonkey for FireFox) contains

the Heap and Call Stack. The Heap is an unstructured area of memory where memory allocation occurs

for all the variables and objects. The Call Stack is a data structure that follows the Last-In-First-Out

(LIFO) system and keeps track of the function calls in stack frames (denoted by the yellow rectangles in

the figure above) which contain the function along with its arguments and local variables.

Web APIs are a part of the browser and contains the essential APIs that allows JavaScript to function in a

concurrent manner. Examples include DOM events, such as the click and scroll event, AJAX requests,

and the setTimeOut function.

The Callback Queue is a data structure that follows the First-In-First-Out (FIFO) system and queues the

functions resolved by the Web APIs.

The Event Loop‘s purpose is to add one queue item from the Callback Queue to the Call Stack when

the Call Stack is empty.

Can you see how the Call Stack would change with the recursiveFactorial example?:

With a more complete picture under our belt, let‘s circle back to iteration and recursion.

In iteration, the looping relies on itself. Little to no change occurs to the Call Stack. In recursion,

however, the looping relies on repeatedly calling on itself, which consequently adds a stack frame to the

Call Stack for each function call. This also means a great deal of removing and adding takes place, which

in turn adds a significant burden in run time for increasing number of calls. When the data set or input is

small, the difference between iteration and recursion in terms of time is insignificant, otherwise, iteration

often performs better.

In the scenario of a significantly large loop or even an infinite loop in iteration, the browser tab will seem

unresponsive to any action taken by the user on the page. This is because the loop taking place in the Call

Stack is blocking any item coming from the Callback Queue. That being said, other tabs would work

normally since only the process for that one tab is stalled.

In a similar case where a large enough recursion occurs, JavaScript actually crashes due to stack

overflow. Each browser has a stack limit which if exceeded would lead to the stack overflow error.

Typically, iteration can be converted to recursion and vice versa. So aside from performance, there is also

readability and maintainability to be concerned about when choosing which approach to use. Recursion,

due to its algorithmic nature often tends to require a fewer number of lines of code. Also, certain

algorithms are more easily understood and intuitive to program through recursion than iteration. In the

end, it all depends on the scope of the project, the allocated resources, the platform, and the audience size,

among other factors, when choosing the tools and techniques to use.

 Global Functions

Global methods are functions that are available to any script as they are not methods of any specific

object. You can invoke global methods directly just as you would do with any core JavaScript global

functions such as parselnt() or eval().

This is a complete list of all the global methods available in HPE Service Manager.

Global method Description

base64Decode Converts base 64 string data to its original format.

base64Encode Converts binary data to a base 64 string format.

compile Validates the syntax of the specified JavaScript.

doHTTPRequest Issues an HTTP request to a specified URL.

doSOAPRequest Issues an SOAP request to a specified URL.

execute This method performs the specified process or program.

getLog This method retrieves a logger named according to the value of the name

parameter.

help Displays a brief description of a Service Manager-defined JavaScript object.

makeSCWebURL Creates a URL query to the Service Manager Web tier.

print Displays a message in the client Messages view.

Quit Allows JavaScript to abort processing and return a failure return code.

RCtoString Converts a Service Manager global return code value into a localized text

string.

readFile Reads data from the local file system.

setAppMessage Defines the message returned in the "message" attribute in the soap response.

stripHtml Takes HTML content and strips out the HTML tags and returns the content as

text without the HTML tags.

uncompressFile Expands a .zip file into a specified location.

writeAttachmentToFile Writes a requested attachment record to the local file system.

writeFile Writes data to the local file system.

xmlstring Converts a JavaScript string to an XML string.

Java Script Arrays:

Arrays

const cars = ["Saab", "Volvo", "BMW"];

Why Use Arrays?

An array is a special variable, which can hold more than one value:

https://docs.microfocus.com/SM/9.51/Hybrid/Content/programming/javascript/reference/javascript_global_method_base64decode.htm
https://docs.microfocus.com/SM/9.51/Hybrid/Content/programming/javascript/reference/javascript_global_method_base64encode.htm
https://docs.microfocus.com/SM/9.51/Hybrid/Content/programming/javascript/reference/javascript_global_method_compile.htm
https://docs.microfocus.com/SM/9.51/Hybrid/Content/programming/javascript/reference/javascript_global_method_dohttprequest.htm
https://docs.microfocus.com/SM/9.51/Hybrid/Content/programming/javascript/reference/javascript_global_method_dosoaprequest.htm
https://docs.microfocus.com/SM/9.51/Hybrid/Content/programming/javascript/reference/javascript_global_method_execute.htm
https://docs.microfocus.com/SM/9.51/Hybrid/Content/programming/javascript/reference/javaScript_global_method_getlog.htm
https://docs.microfocus.com/SM/9.51/Hybrid/Content/programming/javascript/reference/javascript_global_method_help.htm
https://docs.microfocus.com/SM/9.51/Hybrid/Content/programming/javascript/reference/javascript_global_method_makescweburl.htm
https://docs.microfocus.com/SM/9.51/Hybrid/Content/programming/javascript/reference/javascript_global_method_print.htm
https://docs.microfocus.com/SM/9.51/Hybrid/Content/programming/javascript/reference/javascript_global_method_quit.htm
https://docs.microfocus.com/SM/9.51/Hybrid/Content/programming/javascript/reference/javascript_global_method_rctostring.htm
https://docs.microfocus.com/SM/9.51/Hybrid/Content/programming/javascript/reference/javascript_global_method_readfile.htm
https://docs.microfocus.com/SM/9.51/Hybrid/Content/programming/javascript/reference/javascript_global_method_setappmessage.htm
https://docs.microfocus.com/SM/9.51/Hybrid/Content/programming/javascript/reference/javascript_global_method_striphtml.htm
https://docs.microfocus.com/SM/9.51/Hybrid/Content/programming/javascript/reference/javascript_global_method_uncompressfile.htm
https://docs.microfocus.com/SM/9.51/Hybrid/Content/programming/javascript/reference/javascript_global_method_writeattachmenttofile.htm
https://docs.microfocus.com/SM/9.51/Hybrid/Content/programming/javascript/reference/javascript_global_method_writefile.htm
https://docs.microfocus.com/SM/9.51/Hybrid/Content/programming/javascript/reference/javascript_global_method_xmlstring.htm

If you have a list of items (a list of car names, for example), storing the cars in single variables could

look like this:

let car1 = "Saab";

let car2 = "Volvo";

let car3 = "BMW";

However, what if you want to loop through the cars and find a specific one? And what if you had not 3

cars, but 300?

The solution is an array!

An array can hold many values under a single name, and you can access the values by referring to an

index number.

Declaring and Allocating Arrays

Using an array literal is the easiest way to create a JavaScript Array.

Syntax:

const array_name = [item1, item2, ...];

Example

const cars = ["Saab", "Volvo", "BMW"];

Spaces and line breaks are not important. A declaration can span multiple lines:

 Example

const cars = [

"Saab",

"Volvo",

"BMW"

];

Using the JavaScript Keyword new

The following example also creates an Array, and assigns values to it:

 Example

const cars = new Array("Saab", "Volvo", "BMW");

The two examples above do exactly the same.

It is a common practice to declare arrays with the const keyword.

Learn more about const with arrays in the chapter: JS Array Const.

https://www.w3schools.com/js/js_array_const.asp

There is no need to use new Array().

For simplicity, readability and execution speed, use the array literal method.

References and Reference Parameters

Accessing Array Elements

You access an array element by referring to the index number:

const cars = ["Saab", "Volvo", "BMW"];

let car = cars[0];

Changing an Array Element

This statement changes the value of the first element in cars:

cars[0] = "Opel";

const cars = ["Saab", "Volvo", "BMW"];

cars[0] = "Opel";

Access the Full Array

With JavaScript, the full array can be accessed by referring to the array name:

 Example

const cars = ["Saab", "Volvo", "BMW"];

document.getElementById("demo").innerHTML = cars;

Arrays are Objects

Arrays are a special type of objects. The typeof operator in JavaScript returns "object" for arrays.

But, JavaScript arrays are best described as arrays.

Arrays use numbers to access its "elements". In this example, person[0] returns John:

 Array:

const person = ["John", "Doe", 46];

Objects use names to access its "members". In this example, person.firstName returns John:

Note: Array indexes start with 0.

[0] is the first element. [1] is the second element.

Example

 Object:

const person = {firstName:"John", lastName:"Doe", age:46};

Array Elements Can Be Objects

JavaScript variables can be objects. Arrays are special kinds of objects.

Because of this, you can have variables of different types in the same Array.

You can have objects in an Array. You can have functions in an Array. You can have arrays in an Array:

myArray[0] = Date.now;

myArray[1] = myFunction;

myArray[2] = myCars;

Passing Arrays to Functions

The real strength of JavaScript arrays are the built-in array properties and methods:

cars.length // Returns the number of elements

cars.sort() // Sorts the array

Array methods are covered in the next chapters.

The length Property

The length property of an array returns the length of an array (the number of array elements).

 Example

const fruits = ["Banana", "Orange", "Apple", "Mango"];

let length = fruits.length;

Accessing the First Array Element

 Example

const fruits = ["Banana", "Orange", "Apple", "Mango"];

let fruit = fruits[0];

Accessing the Last Array Element

 Example

const fruits = ["Banana", "Orange", "Apple", "Mango"];

let fruit = fruits[fruits.length - 1];

The length property is always one more than the highest array index.

One way to loop through an array, is using a for loop:

Example

const fruits = ["Banana", "Orange", "Apple", "Mango"];

let fLen = fruits.length;

let text = "";

for (let i = 0; i < fLen; i++) {

text += "" + fruits[i] + "";

}

text += "";

You can also use the Array.forEach() function:

 Example

const fruits = ["Banana", "Orange", "Apple", "Mango"];

let text = "";

fruits.forEach(myFunction);

text += "";

function myFunction(value) {

text += "" + value + "";

}

Adding Array Elements

The easiest way to add a new element to an array is using the push() method:

 Example

const fruits = ["Banana", "Orange", "Apple"];

fruits.push("Lemon"); // Adds a new element (Lemon) to fruits

New element can also be added to an array using the length property:

 Example

const fruits = ["Banana", "Orange", "Apple"];

fruits[fruits.length] = "Lemon"; // Adds "Lemon" to fruits

 Example

const fruits = ["Banana", "Orange", "Apple"];

fruits[6] = "Lemon"; // Creates undefined "holes" in fruits

Sorting an Array

The sort() method sorts an array alphabetically:

WARNING !

Adding elements with high indexes can create undefined "holes" in an array:

const fruits = ["Banana", "Orange", "Apple", "Mango"];
fruits.sort();

Reversing an Array

The reverse() method reverses the elements in an array.

You can use it to sort an array in descending order:

const fruits = ["Banana", "Orange", "Apple", "Mango"];
fruits.sort();

fruits.reverse();

Numeric Sort

By default, the sort() function sorts values as strings.

This works well for strings ("Apple" comes before "Banana").

However, if numbers are sorted as strings, "25" is bigger than "100", because "2" is bigger than "1".

Because of this, the sort() method will produce incorrect result when sorting numbers.

You can fix this by providing a compare function:

const points = [40, 100, 1, 5, 25, 10];
points.sort(function(a, b){return a - b});

Use the same trick to sort an array descending:

 Example

const points = [40, 100, 1, 5, 25, 10];

points.sort(function(a, b){return b - a});

The Compare Function

The purpose of the compare function is to define an alternative sort order.

The compare function should return a negative, zero, or positive value, depending on the arguments:

function(a, b){return a - b}

When the sort() function compares two values, it sends the values to the compare function, and sorts
the values according to the returned (negative, zero, positive) value.

Example

Example

Example

If the result is negative a is sorted before b.

If the result is positive b is sorted before a.

If the result is 0 no changes are done with the sort order of the two values.

Example:

The compare function compares all the values in the array, two values at a time (a, b).

When comparing 40 and 100, the sort() method calls the compare function(40, 100).

The function calculates 40 - 100 (a - b), and since the result is negative (-60), the sort function will
sort 40 as a value lower than 100.

You can use this code snippet to experiment with numerically and alphabetically sorting:

<button onclick="myFunction1()">Sort Alphabetically</button>

<button onclick="myFunction2()">Sort Numerically</button>

<p id="demo"></p>

<script>

const points = [40, 100, 1, 5, 25, 10];

document.getElementById("demo").innerHTML = points;

function myFunction1() {

points.sort();

document.getElementById("demo").innerHTML = points;

}

function myFunction2() {

points.sort(function(a, b){return a - b});

document.getElementById("demo").innerHTML = points;

}

</script>

Sorting an Array in Random Order

const points = [40, 100, 1, 5, 25, 10];
points.sort(function(a, b){return 0.5 - Math.random()});

The Fisher Yates Method

The above example, array.sort(), is not accurate, it will favor some numbers over the others.

The most popular correct method, is called the Fisher Yates shuffle, and was introduced in data science

as early as 1938!

Example

In JavaScript the method can be translated to this:

const points = [40, 100, 1, 5, 25, 10];

for (let i = points.length -1; i > 0; i--) {

let j = Math.floor(Math.random() * i)

let k = points[i]

points[i] = points[j]

points[j] = k

}

Find the Highest (or Lowest) Array Value

There are no built-in functions for finding the max or min value in an array.

However, after you have sorted an array, you can use the index to obtain the highest and lowest values.

Sorting ascending:

const points = [40, 100, 1, 5, 25, 10];
points.sort(function(a, b){return a - b});

// now points[0] contains the lowest value

// and points[points.length-1] contains the highest value

Sorting descending:

const points = [40, 100, 1, 5, 25, 10];
points.sort(function(a, b){return b - a});

// now points[0] contains the highest value

// and points[points.length-1] contains the lowest value

Using Math.max() on an Array

You can use Math.max.apply to find the highest number in an array:

function myArrayMax(arr) {
return Math.max.apply(null, arr);

}

Math.max.apply(null, [1, 2, 3]) is equivalent to Math.max(1, 2, 3).

Using Math.min() on an Array

Example

Example

Example

Sorting a whole array is a very inefficient method if you only want to find the highest (or lowest) value.

Example

You can use Math.min.apply to find the lowest number in an array:

function myArrayMin(arr) {
return Math.min.apply(null, arr);

}

Math.min.apply(null, [1, 2, 3]) is equivalent to Math.min(1, 2, 3).

My Min / Max JavaScript Methods

The fastest solution is to use a "home made" method.

This function loops through an array comparing each value with the highest value found:

function myArrayMax(arr) {
let len = arr.length;

let max = -Infinity;

while (len--) {

if (arr[len] > max) {

max = arr[len];

}

}

return max;

}

This function loops through an array comparing each value with the lowest value found:

function myArrayMin(arr) {
let len = arr.length;

let min = Infinity;

while (len--) {

if (arr[len] < min) {

min = arr[len];

}
}

return min;

}

Sorting Object Arrays

JavaScript arrays often contain objects:

Example

Example (Find Max)

Example (Find Min)

const cars = [
{type:"Volvo", year:2016},

{type:"Saab", year:2001},

{type:"BMW", year:2010}

];

Even if objects have properties of different data types, the sort() method can be used to sort the array.

The solution is to write a compare function to compare the property values:

cars.sort(function(a, b){return a.year - b.year});

Comparing string properties is a little more complex:

cars.sort(function(a, b){

let x = a.type.toLowerCase();

let y = b.type.toLowerCase();

if (x < y) {return -1;}

if (x > y) {return 1;}

return 0;

});

Searching Arrays

JavaScript Array indexOf()

const fruits = ["Banana", "Orange", "Apple", "Mango"];
let index = fruits.indexOf("Apple");

const fruits = ["Banana", "Orange", "Apple", "Mango", "Apple"];
let index = fruits.indexOf("Apple", 3)

Definition and Usage

The indexOf() method returns the first index (position) of a specified value.

The indexOf() method returns -1 if the value is not found.

The indexOf() method starts at a specified index and searches from left to right.

Example

Example

Example

Examples

Find the first index of "Apple":

Start at index 3:

By default the search starts at the first element and ends at the last.

Negative start values counts from the last element (but still searches from right to left).

Syntax

array.indexOf(item, start)

Parameters

Parameter Description

item Required.

The value to search for.

start Optional.

Where to start the search.

Default value is 0.

Negative values start the search from the end of the array.

Return Value

Type Description

A number The index (position)

-1 if the item is not found.

of the first item found.

Multiple-Subscripted Arrays

A multiple-subscripted array can be initialized when it's defined, much like a single-

subscripted array. The values are grouped by row in braces. The values in the first set of braces

initialize row 0 and the values in the second set of braces initialize row 1. elements b[1][0] and b[1][1],

respectively.

 Arrays with 2 subscripts are often used to represent tables of values.

 To identify a particular element in the table, we specify:

o its row (by convention, the 1st subscript), and

See Also:

The lastIndexOf() method

https://www.w3schools.com/jsref/jsref_lastindexof_array.asp

o its column (by convention, the 2nd subscript). // Draw a picture

 Arrays in Java can have more than 2 subscripts.

Can you think of something that might be well represented as an array with 3 subscripts?

 In Java, multiple-subscripted arrays are implemented as arrays of arrays:

o A 2-dimensional array of int is implemented as an array of an array of int.
o There really are only single-subscripted arrays, but an array's elements can be

anything, including arrays.

o This simplifies the language.
o A good illustration of this uniform treatment is the inner loop of

the printArray method: Clearly, element a[i] is itself an array; it has a length attribute.

Java Script Objects:

In JavaScript, almost "everything" is an object.

 Booleans can be objects (if defined with the new keyword)

 Numbers can be objects (if defined with the new keyword)

 Strings can be objects (if defined with the new keyword)

 Dates are always objects
 Maths are always objects

 Regular expressions are always objects

 Arrays are always objects

 Functions are always objects

 Objects are always objects

All JavaScript values, except primitives, are objects.

JavaScript Primitives

A primitive value is a value that has no properties or

methods. A primitive data type is data that has a primitive

value.

JavaScript defines 5 types of primitive data types:

 string

 number

 boolean

 null

 undefined

Primitive values are immutable (they are hardcoded and therefore cannot be changed).

Value Type Comment

"Hello" string "Hello"

"Hello"

is always

3.14 number 3.14 is always 3.14

true boolean true is always true

In JavaScript, objects are king. If you understand objects, you understand JavaScript.

 But you cannot change the value of 3.14.

Objects are Variables

JavaScript variables can contain single values:

let person = "John Doe";

JavaScript variables can also contain many values.

Objects are variables too. But objects can contain many values.

Object values are written as name : value pairs (name and value separated by a colon).

let person = {firstName:"John", lastName:"Doe", age:50, eyeColor:"blue"};

It is a common practice to declare objects with the const keyword.

const person = {firstName:"John", lastName:"Doe", age:50, eyeColor:"blue"};

Object Properties

The named values, in JavaScript objects, are called properties.

Property Value

firstName John

lastName Doe

age 50

eyeColor blue

Objects written as name value pairs are similar to:

false boolean false is always false

null null (object) null is always null

undefined undefined undefined is always

undefined

if x =

3.14,

you

can

change

the

value

of x.

A JavaScript object is a collection of named values

Example

Example

Example

 Associative arrays in PHP

 Dictionaries in Python

 Hash tables in C

 Hash maps in Java

 Hashes in Ruby and Perl

Object Methods

Methods are actions that can be performed on objects.

Object properties can be both primitive values, other objects, and

functions. An object method is an object property containing a function

definition.

Property Value

firstName John

lastName Doe

age 50

eyeColor blue

fullName function() {return this.firstName + " " +

this.lastName;}

You will learn more about methods in the next chapter

Creating a JavaScript Object

With JavaScript, you can define and create your own objects.

There are different ways to create new objects:

 Create a single object, using an object literal.

 Create a single object, with the keyword new.

 Define an object constructor, and then create objects of the constructed type.

 Create an object using Object.create().

Using an Object Literal

This is the easiest way to create a JavaScript Object.

Using an object literal, you both define and create an object in one statement.

An object literal is a list of name:value pairs (like age:50) inside curly braces {}.

JavaScript objects are containers for named values, called properties and methods.

The following example creates a new JavaScript object with four properties:

const person = {firstName:"John", lastName:"Doe", age:50, eyeColor:"blue"};

Spaces and line breaks are not important. An object definition can span multiple lines:

const person = {
firstName: "John",

lastName: "Doe",

age: 50,

eyeColor: "blue"

};

This example creates an empty JavaScript object, and then adds 4 properties:

const person = {};
person.firstName = "John";

person.lastName = "Doe";

person.age = 50;

person.eyeColor = "blue"

Using the JavaScript Keyword new

The following example create a new JavaScript object using new Object(), and then adds 4 properties:

const person = new Object();
person.firstName = "John";

person.lastName = "Doe";

person.age = 50;

person.eyeColor = "blue";

JavaScript Objects are Mutable

Objects are mutable: They are addressed by reference, not by value.

If person is an object, the following statement will not create a copy of person:

Example

Example

Example

Example

The examples above do exactly the same.

But there is no need to use new Object().

For readability, simplicity and execution speed, use the object literal method.

const x = person; // Will not create a copy of person.

The object x is not a copy of person. It is person. Both x and person are the same object.

Any changes to x will also change person, because x and person are the same object.

const person = {
firstName:"John",

lastName:"Doe",

age:50, eyeColor:"blue"

}

const x = person;

x.age = 10; // Will change both x.age and person.age

Math Object

Math.PI;

The Math Object

Unlike other objects, the Math object has no constructor.

The Math object is static.

All methods and properties can be used without creating a Math object first.

Math Properties (Constants)

The syntax for any Math property is : Math.property.

JavaScript provides 8 mathematical constants that can be accessed as Math properties:

Math.E // returns Euler's number
Math.PI // returns PI

Math.SQRT2 // returns the square root of 2

Math.SQRT1_2 // returns the square root of 1/2

Math.LN2 // returns the natural logarithm of 2

Math.LN10 // returns the natural logarithm of 10

Math.LOG2E // returns base 2 logarithm of E

Math.LOG10E // returns base 10 logarithm of E

Example

Example

The JavaScript Math object allows you to perform mathematical tasks on numbers.

Example

Math Methods

The syntax for Math any methods is : Math.method(number)

Number to Integer

There are 4 common methods to round a number to an integer:

Math.round(x) Returns x rounded to its nearest integer

Math.ceil(x) Returns x rounded up to its nearest integer

Math.floor(x) Returns x rounded down to its nearest

integer

Math.trunc(x) Returns the integer part of x (new in ES6)

Math.round()

Math.round(x) returns the nearest integer:

Math.round(4.6);

Math.round(4.5);

Math.round(4.4);

Math.ceil()

Math.ceil(x) returns the value of x rounded up to its nearest integer:

Math.ceil(4.9);
Math.ceil(4.7);

Math.ceil(4.4);

Math.ceil(4.2);

Math.ceil(-4.2);

Math.floor()

Math.floor(x) returns the value of x rounded down to its nearest integer:

Examples

Example

https://www.w3schools.com/js/js_es6.asp

Math.floor(4.9);
Math.floor(4.7);

Math.floor(4.4);

Math.floor(4.2);

Math.floor(-4.2);

Math.trunc()

Math.trunc(x) returns the integer part of x:

Math.trunc(4.9);
Math.trunc(4.7);

Math.trunc(4.4);

Math.trunc(4.2);

Math.trunc(-4.2);

Math.sign()

Math.sign(x) returns if x is negative, null or positive:

Math.sign(-4);
Math.sign(0);

Math.sign(4);

Math.pow()

Math.pow(x, y) returns the value of x to the power of y:

Math.pow(8, 2);

Math.sqrt()

Math.sqrt(x) returns the square root of x:

Math.sqrt(64);

Math.abs()

Math.abs(x) returns the absolute (positive) value of x:

Example

Example

Example

Example

Example

Math.abs(-4.7);

Math.sin()

Math.sin(x) returns the sine (a value between -1 and 1) of the angle x (given in radians).

If you want to use degrees instead of radians, you have to convert degrees to radians:

Angle in radians = Angle in degrees x PI / 180.

Math.sin(90 * Math.PI / 180); // returns 1 (the sine of 90 degrees)

Math.cos()

Math.cos(x) returns the cosine (a value between -1 and 1) of the angle x (given in radians).

If you want to use degrees instead of radians, you have to convert degrees to radians:

Angle in radians = Angle in degrees x PI / 180.

Math.cos(0 * Math.PI / 180); // returns 1 (the cos of 0 degrees)

Math.min() and Math.max()

Math.min() and Math.max() can be used to find the lowest or highest value in a list of arguments:

Math.min(0, 150, 30, 20, -8, -200);

Math.max(0, 150, 30, 20, -8, -200);

Math.random()

Math.random() returns a random number between 0 (inclusive), and 1 (exclusive):

Math.random();

The Math.log() Method

Math.log(x) returns the natural logarithm of x.

The natural logarithm returns the time needed to reach a certain level of growth:

Example

Example

Example

Example

Example

Example

Math.log(1);
Math.log(2);

Math.log(3);

Math.E and Math.log() are twins.

Math.log(10);

The Math.log2() Method

Math.log2(x) returns the base 2 logarithm of x.

Math.log2(8);

The Math.log10() Method

Math.log10(x) returns the base 10 logarithm of x.

Math.log10(1000);

JavaScript Math Methods

Method Description

abs(x) Returns the absolute value of x

acos(x) Returns the arccosine of x, in radians

acosh(x) Returns the hyperbolic arccosine of x

asin(x) Returns the arcsine of x, in radians

asinh(x) Returns the hyperbolic arcsine of x

atan(x) Returns the arctangent of x as a numeric

value between -PI/2 and PI/2 radians

atan2(y, x) Returns the arctangent of the quotient of its

arguments

atanh(x) Returns the hyperbolic arctangent of x

Examples

How many times must we multiply Math.E to get 10?

How many times must we multiply 2 to get 8?

How many times must we multiply 10 to get 1000?

https://www.w3schools.com/jsref/jsref_abs.asp
https://www.w3schools.com/jsref/jsref_acos.asp
https://www.w3schools.com/jsref/jsref_acosh.asp
https://www.w3schools.com/jsref/jsref_asin.asp
https://www.w3schools.com/jsref/jsref_asinh.asp
https://www.w3schools.com/jsref/jsref_atan.asp
https://www.w3schools.com/jsref/jsref_atan2.asp
https://www.w3schools.com/jsref/jsref_atanh.asp

cbrt(x) Returns the cubic root of x

ceil(x) Returns x, rounded upwards to the nearest

integer

cos(x) Returns the cosine of x (x is in radians)

cosh(x) Returns the hyperbolic cosine of x

exp(x) Returns the value of Ex

floor(x) Returns x, rounded downwards to the

nearest integer

log(x) Returns the natural logarithm (base E) of x

max(x, y, z, ..., n) Returns the number with the highest value

min(x, y, z, ..., n) Returns the number with the lowest value

pow(x, y) Returns the value of x to the power of y

random() Returns a random number between 0 and 1

round(x) Rounds x to the nearest integer

sign(x) Returns if x is negative, null or positive (-

1, 0, 1)

sin(x) Returns the sine of x (x is in radians)

sinh(x) Returns the hyperbolic sine of x

sqrt(x) Returns the square root of x

tan(x) Returns the tangent of an angle

tanh(x) Returns the hyperbolic tangent of a number

trunc(x) Returns the integer part of a number (x)

String Object

The String object lets you work with a series of characters; it wraps Javascript's string primitive data

type with a number of helper methods.

As JavaScript automatically converts between string primitives and String objects, you can call any of

the helper methods of the String object on a string primitive.

Syntax

Use the following syntax to create a String object −

https://www.w3schools.com/jsref/jsref_cbrt.asp
https://www.w3schools.com/jsref/jsref_ceil.asp
https://www.w3schools.com/jsref/jsref_cos.asp
https://www.w3schools.com/jsref/jsref_cosh.asp
https://www.w3schools.com/jsref/jsref_exp.asp
https://www.w3schools.com/jsref/jsref_floor.asp
https://www.w3schools.com/jsref/jsref_log.asp
https://www.w3schools.com/jsref/jsref_max.asp
https://www.w3schools.com/jsref/jsref_min.asp
https://www.w3schools.com/jsref/jsref_pow.asp
https://www.w3schools.com/jsref/jsref_random.asp
https://www.w3schools.com/jsref/jsref_round.asp
https://www.w3schools.com/jsref/jsref_sign.asp
https://www.w3schools.com/jsref/jsref_sin.asp
https://www.w3schools.com/jsref/jsref_sinh.asp
https://www.w3schools.com/jsref/jsref_sqrt.asp
https://www.w3schools.com/jsref/jsref_tan.asp
https://www.w3schools.com/jsref/jsref_tanh.asp
https://www.w3schools.com/jsref/jsref_trunc.asp

var val = new String(string);

The String parameter is a series of characters that has been properly encoded.

String Properties

Here is a list of the properties of String object and their description.

Sr.No. Property & Description

1 constructor

Returns a reference to the String function that created the object.

2 length

Returns the length of the string.

3 prototype

The prototype property allows you to add properties and methods to an object.

In the following sections, we will have a few examples to demonstrate the usage of String properties.

String Methods

Here is a list of the methods available in String object along with their description.

Sr.No. Method & Description

1 charAt()

Returns the character at the specified index.

2 charCodeAt()

Returns a number indicating the Unicode value of the character at the given index.

3 concat()

Combines the text of two strings and returns a new string.

4 indexOf()

Returns the index within the calling String object of the first occurrence of the specified

value, or -1 if not found.

5 lastIndexOf()

Returns the index within the calling String object of the last occurrence of the specified

value, or -1 if not found.

6 localeCompare()

Returns a number indicating whether a reference string comes before or after or is the

same as the given string in sort order.

https://www.tutorialspoint.com/javascript/string_constructor.htm
https://www.tutorialspoint.com/javascript/string_length.htm
https://www.tutorialspoint.com/javascript/object_prototype.htm
https://www.tutorialspoint.com/javascript/string_charat.htm
https://www.tutorialspoint.com/javascript/string_charcodeat.htm
https://www.tutorialspoint.com/javascript/string_concat.htm
https://www.tutorialspoint.com/javascript/string_indexof.htm
https://www.tutorialspoint.com/javascript/string_lastindexof.htm
https://www.tutorialspoint.com/javascript/string_localecompare.htm

7 match()

Used to match a regular expression against a string.

8 replace()

Used to find a match between a regular expression and a string, and to replace the

matched substring with a new substring.

9 search()

Executes the search for a match between a regular expression and a specified string.

10 slice()

Extracts a section of a string and returns a new string.

11 split()

Splits a String object into an array of strings by separating the string into substrings.

12 substr()

Returns the characters in a string beginning at the specified location through the

specified number of characters.

13 substring()

Returns the characters in a string between two indexes into the string.

14 toLocaleLowerCase()

The characters within a string are converted to lower case while respecting the current

locale.

15 toLocaleUpperCase()

The characters within a string are converted to upper case while respecting the current

locale.

16 toLowerCase()

Returns the calling string value converted to lower case.

17 toString()

Returns a string representing the specified object.

18 toUpperCase()

Returns the calling string value converted to uppercase.

19 valueOf()

Returns the primitive value of the specified object.

String HTML Wrappers

https://www.tutorialspoint.com/javascript/string_match.htm
https://www.tutorialspoint.com/javascript/string_replace.htm
https://www.tutorialspoint.com/javascript/string_search.htm
https://www.tutorialspoint.com/javascript/string_slice.htm
https://www.tutorialspoint.com/javascript/string_split.htm
https://www.tutorialspoint.com/javascript/string_substr.htm
https://www.tutorialspoint.com/javascript/string_substring.htm
https://www.tutorialspoint.com/javascript/string_tolocalelowercase.htm
https://www.tutorialspoint.com/javascript/string_tolocaleuppercase.htm
https://www.tutorialspoint.com/javascript/string_tolowercase.htm
https://www.tutorialspoint.com/javascript/string_tostring.htm
https://www.tutorialspoint.com/javascript/string_touppercase.htm
https://www.tutorialspoint.com/javascript/string_valueof.htm

Here is a list of the methods that return a copy of the string wrapped inside an appropriate HTML tag.

Sr.No. Method & Description

1 anchor()

Creates an HTML anchor that is used as a hypertext target.

2 big()

Creates a string to be displayed in a big font as if it were in a <big> tag.

3 blink()

Creates a string to blink as if it were in a <blink> tag.

4 bold()

Creates a string to be displayed as bold as if it were in a tag.

5 fixed()

Causes a string to be displayed in fixed-pitch font as if it were in a <tt> tag

6 fontcolor()

Causes a string to be displayed in the specified color as if it were in a <font

color="color"> tag.

7 fontsize()

Causes a string to be displayed in the specified font size as if it were in a <font

size="size"> tag.

8 italics()

Causes a string to be italic, as if it were in an <i> tag.

9 link()

Creates an HTML hypertext link that requests another URL.

10 small()

Causes a string to be displayed in a small font, as if it were in a <small> tag.

11 strike()

Causes a string to be displayed as struck-out text, as if it were in a <strike> tag.

12 sub()

Causes a string to be displayed as a subscript, as if it were in a <sub> tag

13 sup()

Causes a string to be displayed as a superscript, as if it were in a <sup> tag

https://www.tutorialspoint.com/javascript/string_anchor.htm
https://www.tutorialspoint.com/javascript/string_big.htm
https://www.tutorialspoint.com/javascript/string_blink.htm
https://www.tutorialspoint.com/javascript/string_bold.htm
https://www.tutorialspoint.com/javascript/string_fixed.htm
https://www.tutorialspoint.com/javascript/string_fontcolor.htm
https://www.tutorialspoint.com/javascript/string_fontsize.htm
https://www.tutorialspoint.com/javascript/string_italics.htm
https://www.tutorialspoint.com/javascript/string_link.htm
https://www.tutorialspoint.com/javascript/string_small.htm
https://www.tutorialspoint.com/javascript/string_strike.htm
https://www.tutorialspoint.com/javascript/string_sub.htm
https://www.tutorialspoint.com/javascript/string_sup.htm

Date Object

JavaScript Date Object lets us work with dates:

Wed Mar 23 2022 14:33:23 GMT+0530 (India Standard Time)
Year: 2022 Month: 3 Day: 23 Hours: 14 Minutes: 33 Seconds: 23

Example
const d = new Date();

JavaScript Date Output

By default, JavaScript will use the browser's time zone and display a date as a full text string:

Wed Mar 23 2022 14:33:23 GMT+0530 (India Standard Time)

Creating Date Objects

Date objects are created with the new Date() constructor.

There are 4 ways to create a new date object:

new Date()

new Date(year, month, day, hours, minutes, seconds,

milliseconds) new Date(milliseconds)

new Date(date string)

new Date()

new Date() creates a new date object with the current date and time:

const d = new Date();

new Date(year, month, ...)

new Date(year, month, ...) creates a new date object with a specified date and time.

7 numbers specify year, month, day, hour, minute, second, and millisecond (in that order):

const d = new Date(2018, 11, 24, 10, 33, 30, 0);

You will learn much more about how to display dates, later in this tutorial.

Note: JavaScript counts months from 0 to

11: January = 0.

December = 11.

Example

Date objects are static. The computer time is ticking, but date objects are not.

Example

https://www.w3schools.com/js/tryit.asp?filename=tryjs_date_getfullyear
https://www.w3schools.com/js/tryit.asp?filename=tryjs_date_getmonth
https://www.w3schools.com/js/tryit.asp?filename=tryjs_date_getdate
https://www.w3schools.com/js/tryit.asp?filename=tryjs_date_gethours
https://www.w3schools.com/js/tryit.asp?filename=tryjs_date_getminutes
https://www.w3schools.com/js/tryit.asp?filename=tryjs_date_getseconds

Specifying a month higher than 11, will not result in an error but add the overflow to the next year:

const d = new Date(2018, 15, 24, 10, 33, 30);
Specifying:

 Is the same as:

const d = new Date(2019, 3, 24, 10, 33, 30);

Specifying a day higher than max, will not result in an error but add the overflow to the next month:

 Specifying:

const d = new Date(2018, 5, 35, 10, 33, 30);

const d = new Date(2018, 6, 5, 10, 33, 30);

Using 6, 4, 3, or 2 Numbers

6 numbers specify year, month, day, hour, minute, second:

const d = new Date(2018, 11, 24, 10, 33, 30);

5 numbers specify year, month, day, hour, and minute:

const d = new Date(2018, 11, 24, 10, 33);

4 numbers specify year, month, day, and hour:

const d = new Date(2018, 11, 24, 10);

3 numbers specify year, month, and day:

const d = new Date(2018, 11, 24);

2 numbers specify year and month:

const d = new Date(2018, 11);

const d = new Date(2018)

Previous Century

One and two digit years will be interpreted as 19xx:

Is the same as:

Example

Example

Example

Example

Example

Example

You cannot omit month. If you supply only one parameter it will be treated as milliseconds.

const d = new Date(99, 11, 24);

const d = new Date(9, 11, 24);

new Date(dateString)

new Date(dateString) creates a new date object from a date string:

const d = new Date("October 13, 2014 11:13:00");

JavaScript Stores Dates as Milliseconds

JavaScript stores dates as number of milliseconds since January 01, 1970, 00:00:00 UTC (Universal

Time Coordinated).

Now the time is: 1648026203871 milliseconds past January 01, 1970

new Date(milliseconds)

new Date(milliseconds) creates a new date object as zero time plus milliseconds:

const d = new Date(0);

01 January 1970 plus 100 000 000 000 milliseconds is approximately 03 March 1973:

const d = new Date(100000000000);

January 01 1970 minus 100 000 000 000 milliseconds is approximately October 31 1966:

const d = new Date(-100000000000);

const d = new Date(86400000);

Example

Example

Example

Example

Zero time is January 01, 1970 00:00:00 UTC.

Example

Example

Example

One day (24 hours) is 86 400 000 milliseconds.

Date Methods

When a Date object is created, a number of methods allow you to operate on it.

Date methods allow you to get and set the year, month, day, hour, minute, second, and millisecond of

date objects, using either local time or UTC (universal, or GMT) time.

Displaying Dates

JavaScript will (by default) output dates in full text string format:

Wed Mar 23 2022 14:33:23 GMT+0530 (India Standard Time)

When you display a date object in HTML, it is automatically converted to a string, with

the toString() method.

const d = new Date();
d.toString();

The toUTCString() method converts a date to a UTC string (a date display standard).

const d = new Date();
d.toUTCString();

The toDateString() method converts a date to a more readable format:

const d = new Date();
d.toDateString();

The toISOString() method converts a Date object to a string, using the ISO standard format:

const d = new Date();
d.toISOString();

Boolean and Number Object

The Boolean object represents two values, either "true" or "false". If value parameter is omitted or is 0,

-0, null, false, NaN, undefined, or the empty string (""), the object has an initial value of false.

Syntax

Use the following syntax to create a boolean object.

var val = new Boolean(value);

Date methods and time zones are covered in the next chapters.

Example

Example

Example

Example

Example

Boolean Properties

Here is a list of the properties of Boolean object −

Sr.No. Property & Description

1 constructor

Returns a reference to the Boolean function that created the object.

2 prototype

The prototype property allows you to add properties and methods to an

object.

In the following sections, we will have a few examples to illustrate the properties of Boolean object.

Boolean Methods

Here is a list of the methods of Boolean object and their description.

Sr.No. Method & Description

1 toSource()

Returns a string containing the source of the Boolean object; you can use this string

to create an equivalent object.

2 toString()

Returns a string of either "true" or "false" depending upon the value of the object.

3 valueOf()

Returns the primitive value of the Boolean object.

In the following sections, we will have a few examples to demonstrate the usage of the Boolean

methods.

 Document Object

Every web page resides inside a browser window which can be considered as an object.

A Document object represents the HTML document that is displayed in that window. The Document

object has various properties that refer to other objects which allow access to and modification of

document content.

The way a document content is accessed and modified is called the Document Object Model,

or DOM. The Objects are organized in a hierarchy. This hierarchical structure applies to the

organization of objects in a Web document.

 Window object − Top of the hierarchy. It is the outmost element of the object hierarchy.

 Document object − Each HTML document that gets loaded into a window becomes a document

object. The document contains the contents of the page.

 Form object − Everything enclosed in the <form>...</form> tags sets the form object.

https://www.tutorialspoint.com/javascript/boolean_constructor.htm
https://www.tutorialspoint.com/javascript/object_prototype.htm
https://www.tutorialspoint.com/javascript/boolean_tosource.htm
https://www.tutorialspoint.com/javascript/boolean_tostring.htm
https://www.tutorialspoint.com/javascript/boolean_valueof.htm

 Form control elements − The form object contains all the elements defined for that object such

as text fields, buttons, radio buttons, and checkboxes.

 Window Object.

Window Object

The window object represents an open window in a browser.

If a document contain frames (<iframe> tags), the browser creates one window object for the HTML

document, and one additional window object for each frame.

Window Object Properties

Property Description

closed Returns a boolean true if a window is closed.

console Returns the Console Object

See also The Console Object.

for the window.

defaultStatus Deprecated.

document Returns the Document object

See also The Document Object.

for the window.

frameElement Returns the frame in which the window runs.

frames Returns all window objects running in the window.

history Returns the History object

See also The History Object.

for the window.

innerHeight Returns the height of the window's content area (viewport)

including scrollbars

innerWidth Returns the width of a window's content area (viewport)

including scrollbars

length Returns the number of <iframe> elements in the current

window

localStorage Allows to save key/value pairs in a web browser. Stores the

data with no expiration date

location Returns the Location object

See also the The Location Object.

for the window.

name Sets or returns the name of a window

https://www.w3schools.com/jsref/prop_win_closed.asp
https://www.w3schools.com/jsref/prop_win_console.asp
https://www.w3schools.com/jsref/obj_console.asp
https://www.w3schools.com/jsref/prop_win_defaultstatus.asp
https://www.w3schools.com/jsref/prop_win_document.asp
https://www.w3schools.com/jsref/dom_obj_document.asp
https://www.w3schools.com/jsref/prop_win_frameelement.asp
https://www.w3schools.com/jsref/prop_win_frames.asp
https://www.w3schools.com/jsref/prop_win_history.asp
https://www.w3schools.com/jsref/obj_history.asp
https://www.w3schools.com/jsref/prop_win_innerheight.asp
https://www.w3schools.com/jsref/prop_win_innerwidth.asp
https://www.w3schools.com/jsref/prop_win_length.asp
https://www.w3schools.com/jsref/prop_win_localstorage.asp
https://www.w3schools.com/jsref/prop_win_location.asp
https://www.w3schools.com/jsref/obj_location.asp
https://www.w3schools.com/jsref/prop_win_name.asp

navigator Returns the Navigator object for the window.

See also The Navigator object.

opener Returns a reference to the window that created the window

outerHeight Returns the height of the browser window, including

toolbars/scrollbars

outerWidth Returns the width of the browser window, including

toolbars/scrollbars

pageXOffset Returns the pixels the current document has been scrolled

(horizontally) from the upper left corner of the window

pageYOffset Returns the pixels the current document has been scrolled

(vertically) from the upper left corner of the window

parent Returns the parent window of the current window

screen Returns the Screen object for the window

See also The Screen object

screenLeft Returns the horizontal coordinate of the window relative to

the screen

screenTop Returns the vertical coordinate of the window relative to the

screen

screenX Returns the horizontal coordinate of the window relative to

the screen

screenY Returns the vertical coordinate of the window relative to the

screen

sessionStorage Allows to save key/value pairs in a web browser. Stores the

data for one session

scrollX An alias of pageXOffset

scrollY An alias of pageYOffset

self Returns the current window

status Deprecated. Avoid using it.

top Returns the topmost browser window

Summary:

https://www.w3schools.com/jsref/prop_win_navigator.asp
https://www.w3schools.com/jsref/obj_navigator.asp
https://www.w3schools.com/jsref/prop_win_opener.asp
https://www.w3schools.com/jsref/prop_win_outerheight.asp
https://www.w3schools.com/jsref/prop_win_outerwidth.asp
https://www.w3schools.com/jsref/prop_win_pagexoffset.asp
https://www.w3schools.com/jsref/prop_win_pagexoffset.asp
https://www.w3schools.com/jsref/prop_win_parent.asp
https://www.w3schools.com/jsref/prop_win_screen.asp
https://www.w3schools.com/jsref/obj_screen.asp
https://www.w3schools.com/jsref/prop_win_screenleft.asp
https://www.w3schools.com/jsref/prop_win_screentop.asp
https://www.w3schools.com/jsref/prop_win_screenx.asp
https://www.w3schools.com/jsref/prop_win_screeny.asp
https://www.w3schools.com/jsref/prop_win_sessionstorage.asp
https://www.w3schools.com/jsref/prop_win_scrollx.asp
https://www.w3schools.com/jsref/prop_win_pagexoffset.asp
https://www.w3schools.com/jsref/prop_win_scrolly.asp
https://www.w3schools.com/jsref/prop_win_pagexoffset.asp
https://www.w3schools.com/jsref/prop_win_self.asp
https://www.w3schools.com/jsref/prop_win_status.asp
https://www.w3schools.com/jsref/prop_win_top.asp

 Use the function keyword to declare a function.

 Use the functionName() to call a function.

 All functions implicitly return undefined if they don‘t explicitly return a value.

 Use the return statement to return a value from a function explicitly.

 The arguments variable is an array-like object inside a function, representing function
arguments.

 The function hoisting allows you to call a function before declaring it.

JavaScript is a multi-paradigm, dynamic language with types and operators, standard built-in

objects, and methods. Its syntax is based on the Java and C languages — many structures from those

languages apply to JavaScript as well.

Questions:

1. Defined functions?

2. Explain about scope rules?

3. Explain about recursion?

4. Differentiate recursion vs iteration?

5. Explain global functions.

6. Define Arrays?

7. Write short notes on declaring and allocating arrays.

8. Differentiate between references and reference parameters?

9. Define sorting arrays?

10. What is searching arrays?

11. Explain multiple-subscripted arrays?

12. Explain in detail about Java Script Objects?

Unit V

Document Object Model (DOM):

The XML Document Object Model (DOM) class is an in-memory representation of an XML

document. The DOM allows you to programmatically read, manipulate, and modify an XML document.

The Xml Reader class also reads XML; however, it provides non-cached, forward-only, read-only

access.

Modeling a document

What the Document Object Model is

The Document Object Model is a programming API for documents. The object model itself

closely resembles the structure of the documents it models. For instance, consider this table, taken from

an HTML document:

Document
Object
Model
(DOM):

Modeling A
Document

Traversing and
Modifying a
DOM Tree –

DOM

Collections and

W3C XML

Schema
Documents

, XML

Vocabularie

XML Name
Spaces,

Document
Type

Definations

Events:
Registering

Event
Handlers,

Onload,On
mousemov

e

XML:

Basics,
Structurin

g Data Form
Processing

With
Onsubmit

and Onreset,
Event

Bubbling and
Other

Events.

The Event
Object And

This, On
Mouseove

r and On
Mouseout

On
Mouseover

and On
Mouseout,

O nfocus
and Onblur

<TABLE>

<ROWS>

<TR>

<TD>Shady Grove</TD>

<TD>Aeolian</TD>

</TR>

<TR>

<TD>Over the River, Charlie</TD>

<TD>Dorian</TD>

</TR>

</ROWS>

</TABLE>

The Document Object Model represents this table like this:

DOM representation of the example table

Traversing and modifying a DOM Tree

The DOM gives you access to the elements of a document, allowing you to modify the contents

of a page dynamically using event-driven JavaScript. This section introduces properties and methods

of all DOM nodes that enable you to traverse the DOM tree, modify nodes and create or delete

content dynamically.

The Document Object Model (DOM) is a standard convention for accessing and manipulating

elements within HTML and XML documents. Elements in the DOM are organized

into a tree-like data structure that can be traversed to navigate, locate, or modify elements and/or content

within an XML/HTML document.

How does DOM tree work?

The DOM is a tree of elements, with the Document node at the root, which points to the html

Element node, which in turn points to its child element nodes head and body, and so on. From each of

those elements, you can navigate the DOM structure and move to different nodes.

With the HTML DOM, you can navigate the node tree using node relationships.

DOM Nodes

According to the W3C HTML DOM standard, everything in an HTML document is a node:

 The entire document is a document node

 Every HTML element is an element node

 The text inside HTML elements are text nodes

 Every HTML attribute is an attribute node (deprecated)

 All comments are comment nodes

With the HTML DOM, all nodes in the node tree can be accessed by JavaScript.

New nodes can be created, and all nodes can be modified or deleted.

Node Relationships

The nodes in the node tree have a hierarchical relationship to each other.

The terms parent, child, and sibling are used to describe the relationships.

 In a node tree, the top node is called the root (or root node)

 Every node has exactly one parent, except the root (which has no parent)

 A node can have a number of children

 Siblings (brothers or sisters) are nodes with the same parent

<html>

<head>

<title>DOM Tutorial</title>

</head>

<body>

<h1>DOM Lesson one</h1>

<p>Hello world!</p>

</body>

</html>

From the HTML above you can read:

 <html> is the root node

 <html> has no parents

 <html> is the parent of <head> and <body>

 <head> is the first child of <html>

 <body> is the last child of <html>and:

 <head> has one child: <title>

 <title> has one child (a text node): "DOM Tutorial"

 <body> has two children: <h1> and <p>

 <h1> has one child: "DOM Lesson one"

 <p> has one child: "Hello world!"

 <h1> and <p> are siblings

Navigating Between Nodes

You can use the following node properties to navigate between nodes with JavaScript:

 parentNode

 childNodes[nodenumber]

 firstChild

 lastChild

 nextSibling

 previousSibling

Child Nodes and Node Values

<title id="demo">DOM Tutorial</title>

The element node <title> (in the example above) does not contain text.

It contains a text node with the value "DOM Tutorial".

The value of the text node can be accessed by the node's innerHTML property:

myTitle = document.getElementById("demo").innerHTML;

Accessing the innerHTML property is the same as accessing the nodeValue of the first

child:

Example:

A common error in DOM processing is to expect an element node to contain text.

myTitle = document.getElementById("demo").firstChild.nodeValue;

Accessing the first child can also be done like this:

myTitle = document.getElementById("demo").childNodes[0].nodeValue;

All the (3) following examples retrieves the text of an <h1> element and copies it into

a <p> element:

Example

<html>

<body>

<h1 id="id01">My First Page</h1>

<p id="id02"></p>

<script>

document.getElementById("id02").innerHTML =

document.getElementById("id01").innerHTML;

</script></body></html>

Example

<html>

<body>

<h1 id="id01">My First Page</h1>

<p id="id02"></p>

<script>

document.getElementById("id02").innerHTML =

document.getElementById("id01").firstChild.nodeValue;

</script></body></html>

Example

<html>

<body>

<h1 id="id01">My First Page</h1>

<p id="id02">Hello!</p>

<script>

document.getElementById("id02").innerHTML =

document.getElementById("id01").childNodes[0].nodeValue;

</script></body></html>

InnerHTML

In this tutorial we use the innerHTML property to retrieve the content of an HTML

element.

However, learning the other methods above is useful for understanding the tree structure

and the navigation of the DOM.

DOM Root Nodes

There are two special properties that allow access to the full document:

 document.body - The body of the document

 document.documentElement - The full document

Example

<html>

<body>

<h2>JavaScript HTMLDOM</h2>

<p>Displaying document.body</p>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML = document.body.innerHTML;

</script></body></html>

Example

<html>

<body>

<h2>JavaScript HTMLDOM</h2>

<p>Displaying document.documentElement</p>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML = document.documentElement.innerHTML;

</script></body></html>

The nodeName Property

The nodeName property specifies the name of a node.

 nodeName is read-only

 nodeName of an element node is the same as the tag name

 nodeName of an attribute node is the attribute name

 nodeName of a text node is always #text

 nodeName of the document node is always #document

Example

<h1 id="id01">My First Page</h1>

<p id="id02"></p>

<script>

document.getElementById("id02").innerHTML =

document.getElementById("id01").nodeName;

</script>

The nodeValue Property

The nodeValue property specifies the value of a node.

 nodeValue for element nodes is null

 nodeValue for text nodes is the text itself

 nodeValue for attribute nodes is the attribute value

The nodeType Property

The nodeType property is read only. It returns the type of a node.

Example

<h1 id="id01">My First Page</h1>

<p id="id02"></p>

<script>

document.getElementById("id02").innerHTML = document.getElementById("id01").nodeType;

</script>

The most important nodeType properties are:

Node Type Example

Note: nodeName always contains the uppercase tag name of an HTML element.

ELEMENT_NODE 1 <h1 class="heading">W3Schools</h1>

ATTRIBUTE_NODE 2 class = "heading" (deprecated)

TEXT_NODE 3 W3Schools

COMMENT_NODE 8 <!-- This is a comment -->

DOCUMENT_NODE 9 The HTML document itself (the parent of

<html>)

DOCUMENT_TYPE_NODE 10 <!Doctype html>

DOM collections and Dynamic styles

DOM collections are accessed as properties of DOM objects such as the document

object or a DOM node. The document object has properties containing the images collection,

links collection, forms collection and anchors collection. These collections contain all the

elements of the corresponding type on the page.

What is DOM dynamic?

D/s is first and foremost an energy dynamic that flows between two people. One person,

the Dom, takes on more the role of leader, guide, enforcer, protector and/or daddy, while the

other person, the sub, assumes more the role of pleaser, brat, tester, baby girl, and/or servant.

An element's style can be changed dynamically. Often such a change is made in

response to user events, which we discuss in Chapter 11. Such style changes can create many

effects, including mouse hover effects, interactive menus, and animations.

Definition and Usage. The style property returns a CSSStyleDeclaration object, which

represents an element's style attribute. The style property is used to get or set a specific style

of an element using different CSS properties.

The HTMLCollection Object

The getElementsByTagName() method returns an HTMLCollection object.

An HTMLCollection object is an array-like list (collection) of HTML elements.

The following code selects all <p> elements in a document:

const myCollection = document.getElementsByTagName("p");

Example

Type 2 is deprecated in the HTML DOM (but works). It is not deprecated in the XML DOM.

myCollection[1]

Note: The index starts at 0.

HTML HTMLCollection Length

The length property defines the number of elements in an HTMLCollection:

Example

myCollection.length

The length property is useful when you want to loop through the elements in a

collection:

Example

const myCollection = document.getElementsByTagName("p");

for (let i = 0; i < myCollection.length; i++) {

myCollection[i].style.color = "red";

}

Javascript DOM Create Dynamic Styles

CSS styles are included in HTML pages using one of two elements.

The <link> element is used to include CSS from an external file, whereas the <style>

element is used to specify inline styles.

The dynamic styles don't exist on the page when it is loaded initially and they are added

after the page has been loaded.

Link Element

Consider this typical <link> element:

Copy

The elements in the collection can be accessed by an index number.

To access the second <p> element you can write:

Change the text color of all <p> elements:

An HTMLCollection is NOT an array!

An HTMLCollection may look like an array, but it is not.

You can loop through the list and refer to the elements with a number (just like an array).

However, you cannot use array methods like valueOf(), pop(), push(), or join() on an

HTMLCollection.

This element can just as easily be created using the following DOM code:

Copy

code works in all major browsers without any issue.

Note that <link> elements should be added to the <head> instead of the body for this to

work properly in all browsers.

The technique can be generalized into the following function:

Copy

The loadStyles() function can then be called like this:

Copy

Loading styles via an external file is asynchronous, so the styles will load out of order

with the JavaScript code being executed.

Typically, it's not necessary to know when the styles have been fully loaded.

<link rel="stylesheet" type="text/css" href="styles.css">

let link = document.createElement("link");

link.rel = "stylesheet";

link.type = "text/css";

link.href = "styles.css";

let head = document.getElementsByTagName("head")[0];

head.appendChild(link);

function loadStyles(url){

let link = document.createElement("link");

link.rel = "stylesheet";

link.type = "text/css";

link.href = url;

let head = document.getElementsByTagName("head")[0];

head.appendChild(link);

}

loadStyles("styles.css");

Inline
The other way to define styles is using the <style> element and including inline CSS,

such as this:

Copy

The following DOM code should work:

Copy

This code works in Firefox, Safari, Chrome, and Opera but not in Internet Explorer.

The workaround for Internet Explorer is to access the element's styleSheet property,

which in turn has a property called cssText that may be set to CSS code as this code sample

shows:

<style type="text/css">

body {

background-color: red;

}

</style>

let style =

document.createElement("style"); style.type

= "text/css";

style.appendChild(document.createTextNode("body{background-color:red}"));

let head = document.getElementsByTagName("head")[0];

head.appendChild(style);

Copy

let style =

document.createElement("style"); style.type

= "text/css";

try{

style.appendChild(document.createTextNode("body{background-color:red}"));

} catch (ex){

style.styleSheet.cssText = "body{background-color:red}";

}

let head = document.getElementsByTagName("head")[0];

This new code uses a try-catch statement to catch the error that Internet Explorer throws

and then responds by using the Internet Explorer-specific way of setting styles.

The generic solution is as follows:

Copy

The function can be called as follows:

Copy

Styles specified in this way are added to the page instantly, so changes should be seen

immediately.

Events: What are events?

Events are actions that happen when a user interacts with the page - like clicking an

element, typing in a field, or loading a page.

Registering Event Handlers

The browser notifies the system that something has happened, and that it needs to be

handled. It gets handled by registering a function, called an event handler, that listens for a

particular type of event.

head.appendChild(style);

function loadStyleString(css){

let style =

document.createElement("style");

style.type = "text/css";

try{

style.appendChild(document.createTextNode(css));

} catch (ex){

style.styleSheet.cssText = css;

}

let head = document.getElementsByTagName("head")[0];

head.appendChild(style);

}

loadStyleString("body{background-color:red}");

What does it mean to "handle an event"?

To put it in simple terms, consider this - let's assume you are interested in attending Web

Development meetup events in your local community.

To do this, you sign-up for a local meetup called "Women Who Code" and subscribe to

notifications. This way, anytime a new meetup is scheduled, you get alerted. That is event

handling!

The "event" here is a new JS meetup. When a new meetup is posted, the website

meetup.com catches this change, thereby "handling" this event. It then notifies you, thus taking

an "action" on the event.

In a browser, events are handled similarly. The browser detects a change, and alerts a

function (event handler) that is listening to a particular event. These functions then perform the

actions as desired.

Let's look at an example of a click event handler:

<div class="buttons">

<button>Press 1</button>

<button>Press 2</button>

<button>Press 3</button>

</div>

const buttonContainer = document.querySelector('.buttons');

console.log('buttonContainer', buttonContainer);

buttonContainer.addEventListener('click', event => {

console.log(event.target.value)

})

What are the different types of events?

An event can be triggered any time a user interacts with the page. These events could be a

user scrolling through the page, clicking on an item, or loading a page.

Here are some common events-

onclick dblclick mousedown mouseup mousemove keydown keyup touchmove touchstart t

ouchend onload onfocus onblur onerror onscroll

Different phases of events - capture, target, bubble

When an event moves through the DOM - whether bubbling up or trickling down - it is

called event propagation. The event propagates through the DOM tree.

Events happen in two phases: the bubbling phase and the capturing phase.

In capture phase, also called the trickling phase, the event "trickles down" to the element

that caused the event.

It starts from the root level element and handler, and then propagates down to the

element. The capture phase is completed when the event reaches the target.

In the bubble phase, the event is "bubbled" up to the DOM tree. It is first captured and

handled by the innermost handler (the one that is closest to the element on which the event

occurred). It then bubbles up (or propagates up) to the higher levels of DOM tree, further up to

its parents, and then finally to its root.

Her's a trick to help you remember this:

trickle down, bubble up

Here's an infographic from quirksmode that explains this very well:

/ \

 | |

| element1 | | |

| | | |

| |element2 | | | |

| |

| Event BUBBLING |

| |

 | |

| element1 | | |

| | | |

| |element2 \ / | |

| |

| Event CAPTURING |

One thing to note is that, whether you register an event handler in either phase, both

phases ALWAYS happen. All events bubble by default.

https://www.quirksmode.org/js/events_order.html

You can register event handlers for either phase, bubbling or capturing, by using the

function addEventListener(type, listener, useCapture). If useCapture is set to false,

the event handler is in the bubbling phase. Otherwise it's in the capture phase.

The order of the phases of the event depends on the browser.

To check which browser honors capture first, you can try the following code in

JSfiddle:<div id="child-one">

<h1>

Child One

</h1>

</div>

const childOne = document.getElementById("child-one");

constchildOneHandler=()=>{

console.log('Captured on child one')

}

constchildOneHandlerCatch=()=>{

console.log('Captured on child one in capture phase')

}

childOne.addEventListener("click", childOneHandler);

childOne.addEventListener("click", childOneHandlerCatch,true);

When an event occurs, you can create an event handler which is a piece of code that will

execute to respond to that event. An event handler is also known as an event listener. It listens to

the event and responds accordingly to the event fires.

An event listener is a function with an explicit name if it is resuable or an anonymous

function in case it is used one time.

An event can be handled by one or multiple event handlers. If an event has multiple event

handlers, all the event handlers will be executed when the event is fired.

There are three ways to assign event handlers.

1) HTML event handler attributes

Event handlers typically have names that begin with on, for example, the event handler

for the click event is onclick.

To assign an event handler to an event associated with an HTML element, you can use an

HTML attribute with the name of the event handler. For example, to execute some code when a

button is clicked, you use the following:

https://www.javascripttutorial.net/javascript-dom/javascript-events/
https://www.javascripttutorial.net/javascript-function/

<inputtype="button"value="Save"onclick="alert('Clicked!')">

Code language:HTML, XML(xml)

In this case, when the button is clicked, the alert box is shown.

When you assign JavaScript code as the value of the onclick attribute, you need to

escape the HTML characters such as ampersand (&), double quotes ("), less than (<), etc., or you

will get a syntax error.

An event handler defined in the HTML can call a function defined in a script. For

Example:

<script>

functionshowAlert(){

 alert('Clicked!');

 }

</script>

<inputtype="button"value="Save"onclick="showAlert()">

Code language:HTML, XML(xml)

In this example, the button calls the showAlert() function when it is clicked.

The showAlert() is a function defined in a separate <script> element, and could be

placed in an external JavaScript file.

Important notes

The following are some important points when you use the event handlers as attributes of

the HTML element:

First, the code in the event handler can access the event object without explicitly

defining it:

<inputtype="button"value="Save"onclick="alert(event.type)">

Code language:HTML, XML(xml)

Second, the this value inside the event handler is equivalent to the event‘s target

element:

<inputtype="button"value="Save"onclick="alert(this.value)">

Code language:HTML, XML(xml)

Third, the event handler can access the element‘s properties, for example:

<inputtype="button"value="Save"onclick="alert(value)">

Code language:HTML, XML(xml)

https://www.javascripttutorial.net/javascript-bom/javascript-alert/

Disadvantages of using HTML event handler attributes

Assigning event handlers using HTML event handler attributes are considered as bad

practices and should be avoided as much as possible because of the following reasons:

First, the event handler code is mixed with the HTML code, which will make the code

more difficult to maintain and extend.

Second, it is a timing issue. If the element is loaded fully before the JavaScript code,

users can start interacting with the element on the webpage which will cause an error.

For example, suppose that the following showAlert() function is defined in an external

JavaScript file:

<inputtype="button"value="Save"onclick="showAlert()">

Code language:HTML, XML(xml)

And when the page is loaded fully and the JavaScript has not been loaded,

the showAlert() function is undefined. If users click the button at this moment, an error will

occur.

2) DOM Level 0 event handlers

Each element has event handler properties such as onclick. To assign an event handler,

you set the property to a function as shown in the example:

let btn = document.querySelector('#btn');

btn.onclick = function() {

 alert('Clicked!');

};

Code language:JavaScript(javascript)

In this case, the anonymous function becomes the method of the button element.

Therefore, the this value is equivalent to the element. And you can access the element‘s

properties inside the event handler:

let btn = document.querySelector('#btn');

btn.onclick = function() {

 alert(this.id);

};

Code language:JavaScript(javascript)

Output:

btn

By using the this value inside the event handler, you can access the element‘s properties

and methods.

To remove the event handler, you set the value of the event handler property to null:

btn.onclick = null;

Code language:JavaScript(javascript)

The DOM Level 0 event handlers are still being used widely because of its simplicity and

cross-browser support.

3) DOM Level 2 event handlers

DOM Level 2 Event Handlers provide two main methods for dealing with the

registering/deregistering event listeners:

 addEventListener() – register an event handler

 removeEventListener() – remove an event handler

These methods are available in all DOM nodes.

The addEventListener() method

The addEventListener() method accepts three arguments: an event name, an event

handler function, and a Boolean value that instructs the method to call the event handler during

the capture phase (true) or during the bubble phase (false). For example:

let btn = document.querySelector('#btn');

btn.addEventListener('click',function(event) {

 alert(event.type); // click

});

Code language:JavaScript(javascript)

It is possible to add multiple event handlers to handle a single event, like this:

let btn = document.querySelector('#btn');

btn.addEventListener('click',function(event) {

 alert(event.type); // click

});

btn.addEventListener('click',function(event) {

 alert('Clicked!');

});

Code language:JavaScript(javascript)

The removeEventListener() method

The removeEventListener() removes an event listener that was added via

the addEventListener(). However, you need to pass the same arguments as were passed

to the addEventListener(). Forexample:

let btn = document.querySelector('#btn');

// add the event listener

let showAlert = function() {

 alert('Clicked!');

};

btn.addEventListener('click', showAlert);

// remove the event listener

btn.removeEventListener('click', showAlert);

Code language:JavaScript(javascript)

Using an anonymous event listener as the following will not work:

let btn = document.querySelector('#btn');

btn.addEventListener('click',function() {

 alert('Clicked!');

});

// won't work

btn.removeEventListener('click', function() {

 alert('Clicked!');

});

Code language:JavaScript(javascript)

onload

The onload event occurs when an object has been loaded.

onload is most often used within the <body> element to execute a script once a web page has

completely loaded all content (including images, script files, CSS files, etc.).

The onload event can be used to check the visitor's browser type and browser version, and load

the proper version of the web page based on the information.

The onload event can also be used to deal with cookies (see "More Examples" below).

Example

Execute a JavaScript immediately after a page has been loaded:

<body onload="myFunction()">

Syntax

<element onload="myScript">

In JavaScript:

object.onload = function(){myScript};

In JavaScript:

object.onload = function(){myScript};

Note: The addEventListener() method is not supported in Internet Explorer 8 and earlier

versions.

Technical Details

Bubbles: No

Cancelable: No

Event type: UiEvent if generated from a user interface, Event otherwise.

Supported

HTML tags:

<body>, <frame>, <iframe>, , <input type="image">,

<link>, <script>, <style>

DOM Version: Level 2 Events

Example

Using onload on an element. Alert "Image is loaded" immediately after an image has

been loaded:

<script>

function loadImage() {

alert("Image is loaded");

}

</script>

Example

Using the onload event to deal with cookies:

<body onload="checkCookies()">

<script>

function checkCookies() {

In HTML:

https://www.w3schools.com/jsref/met_element_addeventlistener.asp
https://www.w3schools.com/jsref/obj_uievent.asp
https://www.w3schools.com/jsref/obj_event.asp

var text = "";

if (navigator.cookieEnabled == true) {

text = "Cookies are enabled.";

} else {

text = "Cookies are not enabled.";

}

document.getElementById("demo").innerHTML = text;

}

</script>

Onmousemove

The onmousemove event occurs when the pointer is moving while it is over an element.

Example

Execute a JavaScript when moving the mouse pointer over a <div> element:

<div onmousemove="myFunction()">Move the cursor over me</div>

Syntax

<element onmousemove="myScript">

In JavaScript:

object.onmousemove = function(){myScript};

In JavaScript, using the addEventListener() method:

object.addEventListener("mousemove",

myScript); Technical Details

Bubbles: Yes

Cancelable: Yes

Event type: MouseEvent

Supported All HTML elements, EXCEPT: <base>, <bdo>,
, <head>,

HTML tags: <html>, <iframe>, <meta>, <param>, <script>, <style>, and

<title>

DOM Version: Level 2 Events

In HTML:

https://www.w3schools.com/jsref/obj_mouseevent.asp

Example

This example demonstrates the difference between the onmousemove, onmouseenter and

mouseover events:

<div onmousemove="myMoveFunction()">

<p id="demo">I will demonstrate onmousemove!</p>

</div>

<div onmouseenter="myEnterFunction()">

<p id="demo2">I will demonstrate onmouseenter!</p>

</div>

<div onmouseover="myOverFunction()">

<p id="demo3">I will demonstrate onmouseover!</p>

</div>

The event Object and this

Event Object

All event objects in the DOM are based on the Event Object.
Therefore, all other event objects (like MouseEvent and KeyboardEvent) has access to

the Event Object's properties and methods.

Event Properties and Methods

Property/Method Description

bubbles Returns whether or not a specific event is a bubbling

event

cancelBubble Sets or returns whether the event should propagate up the

hierarchy or not

cancelable Returns whether or not an event can have its default

action prevented

composed Returns whether the event is composed or not

createEvent() Creates a new event

composedPath() Returns the event's path

currentTarget Returns the element whose event listeners triggered the

event

defaultPrevented Returns whether or not the preventDefault() method was

called for the event

eventPhase Returns which phase of the event flow is currently being

evaluated

https://www.w3schools.com/jsref/obj_mouseevent.asp
https://www.w3schools.com/jsref/obj_keyboardevent.asp
https://www.w3schools.com/jsref/event_bubbles.asp
https://www.w3schools.com/jsref/event_cancelbubble.asp
https://www.w3schools.com/jsref/event_cancelable.asp
https://www.w3schools.com/jsref/event_createevent.asp
https://www.w3schools.com/jsref/event_composedpath.asp
https://www.w3schools.com/jsref/event_currenttarget.asp
https://www.w3schools.com/jsref/event_defaultprevented.asp
https://www.w3schools.com/jsref/event_eventphase.asp

isTrusted Returns whether or not an event is trusted

preventDefault() Cancels the event if it is cancelable, meaning that the

default action that belongs to the event will not occur

stopImmediatePropagation() Prevents other listeners of the same event from being

called

stopPropagation() Prevents further propagation of an event during event

flow

target Returns the element that triggered the event

timeStamp Returns the time (in milliseconds relative to the epoch) at

which the event was created

type Returns the name of the event

Event Types

These event types belongs to the Event Object:

Event Description

abort The event occurs when the loading of a media is aborted

afterprint The event occurs when a page has started printing

beforeprint The event occurs when a page is about to be printed

beforeunload The event occurs before the document is about to be unloaded

canplay The event occurs when the browser can start playing the media

(when it has buffered enough to begin)

canplaythrough The event occurs when the browser can play through the media

without stopping for buffering

change The event occurs when the content of a form element, the

selection, or the checked state have changed (for <input>,

<select>, and <textarea>)

error The event occurs when an error occurs while loading an external

file

fullscreenchange The event occurs when an element is displayed in fullscreen

mode

fullscreenerror The event occurs when an element can not be displayed in

fullscreen mode

input The event occurs when an element gets user input

https://www.w3schools.com/jsref/event_istrusted.asp
https://www.w3schools.com/jsref/event_preventdefault.asp
https://www.w3schools.com/jsref/event_stopimmediatepropagation.asp
https://www.w3schools.com/jsref/event_stoppropagation.asp
https://www.w3schools.com/jsref/event_target.asp
https://www.w3schools.com/jsref/event_timestamp.asp
https://www.w3schools.com/jsref/event_type.asp
https://www.w3schools.com/jsref/event_onabort_media.asp
https://www.w3schools.com/jsref/event_onafterprint.asp
https://www.w3schools.com/jsref/event_onbeforeprint.asp
https://www.w3schools.com/jsref/event_onbeforeunload.asp
https://www.w3schools.com/jsref/event_oncanplay.asp
https://www.w3schools.com/jsref/event_oncanplaythrough.asp
https://www.w3schools.com/jsref/event_onchange.asp
https://www.w3schools.com/jsref/event_onerror.asp
https://www.w3schools.com/jsref/event_fullscreenchange.asp
https://www.w3schools.com/jsref/event_fullscreenerror.asp
https://www.w3schools.com/jsref/event_oninput.asp

invalid The event occurs when an element is invalid

load The event occurs when an object has loaded

loadeddata The event occurs when media data is loaded

loadedmetadata The event occurs when meta data (like dimensions and duration)

are loaded

message The event occurs when a message is received through the event

source

offline The event occurs when the browser starts to work offline

online The event occurs when the browser starts to work online

open The event occurs when a connection with the event source is

opened

pause The event occurs when the media is paused either by the user or

programmatically

play The event occurs when the media has been started or is no longer

paused

playing The event occurs when the media is playing after having been

paused or stopped for buffering

progress The event occurs when the browser is in the process of getting the

media data (downloading the media)

ratechange The event occurs when the playing speed of the media is changed

resize The event occurs when the document view is resized

reset The event occurs when a form is reset

scroll The event occurs when an element's scrollbar is being scrolled

search The event occurs when the user writes something in a search field

(for <input="search">)

seeked The event occurs when the user is finished moving/skipping to a
new position in the media

seeking The event occurs when the user starts moving/skipping to a new

position in the media

select The event occurs after the user selects some text (for <input> and

<textarea>)

https://www.w3schools.com/jsref/event_oninvalid.asp
https://www.w3schools.com/jsref/event_onload.asp
https://www.w3schools.com/jsref/event_onloadeddata.asp
https://www.w3schools.com/jsref/event_onloadedmetadata.asp
https://www.w3schools.com/jsref/event_onmessage_sse.asp
https://www.w3schools.com/jsref/event_onoffline.asp
https://www.w3schools.com/jsref/event_ononline.asp
https://www.w3schools.com/jsref/event_onopen_sse.asp
https://www.w3schools.com/jsref/event_onpause.asp
https://www.w3schools.com/jsref/event_onplay.asp
https://www.w3schools.com/jsref/event_onplaying.asp
https://www.w3schools.com/jsref/event_onprogress.asp
https://www.w3schools.com/jsref/event_onratechange.asp
https://www.w3schools.com/jsref/event_onresize.asp
https://www.w3schools.com/jsref/event_onreset.asp
https://www.w3schools.com/jsref/event_onscroll.asp
https://www.w3schools.com/jsref/event_onsearch.asp
https://www.w3schools.com/jsref/event_onseeked.asp
https://www.w3schools.com/jsref/event_onseeking.asp
https://www.w3schools.com/jsref/event_onselect.asp

show The event occurs when a <menu> element is shown as a context

menu

stalled The event occurs when the browser is trying to get media data,

but data is not available

submit The event occurs when a form is submitted

suspend The event occurs when the browser is intentionally not getting

media data

timeupdate The event occurs when the playing position has changed (like

when the user fast forwards to a different point in the media)

toggle The event occurs when the user opens or closes the <details>

element

unload The event occurs once a page has unloaded (for <body>)

waiting The event occurs when the media has paused but is expected to

resume (like when the media pauses to buffer more data)

 on mouseover and on mouseout

The onmouseover event occurs when the mouse pointer is moved onto an element, or

onto one of its children. Tip: This event is often used together with the onmouseout event,

which occurs when a user moves the mouse pointer out of an element. The onmouseout

event occurs when the mouse pointer is moved out of an element, or out of one of its children.

Tip: This event is often used together with the onmouseover event, which occurs when the

pointer is moved onto an element, or onto one of its children.

Example

Execute a JavaScript when moving the mouse pointer out of an image:

Syntax

 In HTML:

<element onmouseout="myScript">

 In JavaScript:

object.onmouseout = function(){myScript};

 In JavaScript, using the addEventListener() method:

object.addEventListener("mouseout", myScript);

Note: The addEventListener() method is not supported in Internet Explorer 8 and earlier

versions.

Technical Details

https://www.w3schools.com/jsref/event_onshow.asp
https://www.w3schools.com/jsref/event_onstalled.asp
https://www.w3schools.com/jsref/event_onsubmit.asp
https://www.w3schools.com/jsref/event_onsuspend.asp
https://www.w3schools.com/jsref/event_ontimeupdate.asp
https://www.w3schools.com/jsref/event_ontoggle.asp
https://www.w3schools.com/jsref/event_onunload.asp
https://www.w3schools.com/jsref/event_onwaiting.asp
https://www.w3schools.com/jsref/event_onmouseover.asp
https://www.w3schools.com/jsref/met_element_addeventlistener.asp

Supported HTML tags: All HTML elements, EXCEPT: <base>, <bdo>,
, <head>, <html>, <ifram

<param>, <script>, <style>, and <title>

DOM Version: Level 2 Events

<div onmousemove="myMoveFunction()">
<p id="demo">I will demonstrate onmousemove!</p>

</div>

<div onmouseleave="myLeaveFunction()">

<p id="demo2">I will demonstrate onmouseleave!</p>

</div>

<div onmouseout="myOutFunction()">

<p id="demo3">I will demonstrate onmouseout!</p>

</div>

Let‘s dive into more details about events that happen when the mouse moves between elements.

Events mouseover/mouseout, relatedTarget

The mouseover event occurs when a mouse pointer comes over an element, and mouseout –
when it leaves.

These events are special, because they have property relatedTarget. This property

complements target. When a mouse leaves one element for another, one of them

becomes target, and the other one – relatedTarget.

For mouseover:

 event.target – is the element where the mouse came over.

 event.relatedTarget – is the element from which the mouse came

(relatedTarget → target).

For mouseout the reverse:

 event.target – is the element that the mouse left.

 event.relatedTarget – is the new under-the-pointer element, that mouse left for

(target → relatedTarget).

 onfocus and onblur

onblur Event

<input type="text" onblur="myFunction()"

Definition and Usage

The onblur event occurs when an object loses focus.

The onblur event is most often used with form validation code (e.g. when the user leaves a form

field).

Tip: The onblur event is the opposite of the onfocus event.

Example
This example demonstrates the difference between the onmousemove, onmouseleave and

onmouseout events:

Example
Execute a JavaScript when a user leaves an input field:

https://javascript.info/mousemove-mouseover-mouseout-mouseenter-mouseleave#events-mouseover-mouseout-relatedtarget
https://www.w3schools.com/jsref/event_onfocus.asp

Tip: The onblur event is similar to the onfocusout event. The main difference is that the onblur

event does not bubble. Therefore, if you want to find out whether an element or its child loses

focus, you could use the onfocusout event. However, you can achieve this by using the

optional useCapture parameter of the addEventListener() method for the onblur event.

Syntax

<element onblur="myScript">

object.onblur = function(){myScript};

object.addEventListener("blur", myScript);

Note: The addEventListener() method is not supported in Internet Explorer 8 and earlier

versions.

 Technical Details

Bubbles: No

Cancelable: No

Event type: FocusEvent

Supported HTML tags: ALL HTML elements, EXCEPT: <base>, <bdo>,
, <head>, <html>, <ifra

<param>, <script>, <style>, and <title>

DOM Version: Level 2 Events

 onfocus

Example

<input type="text" onfocus="focusFunction()" onblur="blurFunction()">
Definition and Usage

The onfocus event occurs when an element gets focus.

The onfocus event is most often used with <input>, <select>, and <a>.

Tip: The onfocus event is the opposite of the onblur event.

Tip: The onfocus event is similar to the onfocusin event. The main difference is that the onfocus

event does not bubble. Therefore, if you want to find out whether an element or its child gets the

focus, you could use the onfocusin event. However, you can achieve this by using the

optional useCapture parameter of the addEventListener() method for the onfocus event.

Example

Execute a JavaScript when an input field gets focus:

<input type="text" onfocus="myFunction()">

Syntax

<element onfocus="myScript">

object.onfocus = function(){myScript};

object.addEventListener("focus", myScript);

In JavaScript:

Using "onblur" together with the "onfocus" event:

In HTML:

In JavaScript, using the addEventListener() method:

In HTML:

In JavaScript, using the addEventListener() method:

In JavaScript:

https://www.w3schools.com/jsref/event_onfocusout.asp
https://www.w3schools.com/jsref/met_element_addeventlistener.asp
https://www.w3schools.com/jsref/met_element_addeventlistener.asp
https://www.w3schools.com/jsref/obj_focusevent.asp
https://www.w3schools.com/jsref/event_onblur.asp
https://www.w3schools.com/jsref/event_onfocusin.asp
https://www.w3schools.com/jsref/met_element_addeventlistener.asp

Note: The addEventListener() method is not supported in Internet Explorer 8 and earlier
versions.

 Technical Details

Bubbles: No

Cancelable: No

Event type: FocusEvent

Supported HTML tags: ALL HTML elements, EXCEPT: <base>, <bdo>,
, <head>, <html>, <ifra

<param>, <script>, <style>, and <title>

DOM Version: Level 2 Events

 Example
Using "onfocus" together with the "onblur" event:

<input type="text" onfocus="focusFunction()" onblur="blurFunction()">

 Form Processing With Onsubmit And Onreset

onsubmit:

Enter Text:

Example:

<script type="text/javascript">

<!--

function validForm(theForm) {

if (theForm.theText.value == "") return false;

return true;

};

//-->

</script>

<form name="boo1" method="GET" action="#" onsubmit="return validForm(this)">

Enter Text:<input type="text" value="" name="theText" size="30" />

<input type="submit" name="submit" value="submit" />

</form>

The onsubmit event can be used to validate the contents of an HTML form before it is

submitted, and block that submission if the form is not filled out correctly. This can be very

useful for ensureing that users have not missed some required information from the form.

The way the onsubmit event must be used is slightly different from previous events - first, it can

only be used on the form tag, and second, it must be used in conjunction with

the return command, to return a value of either true or false. If a value of true is returned, then

the form will submit successfully. If a value of false is returned instead, then the form will not

submit

https://www.w3schools.com/jsref/met_element_addeventlistener.asp
https://www.w3schools.com/jsref/obj_focusevent.asp

submit. If you leave off the return command from the onsubmit="...", then it will not be able to
stop the form from being submitted.

Onreset

The onreset event occurs when a form is reset.

Example

Execute a JavaScript when a form is reset:

<form onreset="myFunction()">

Enter name: <input type="text">

<input type="reset">

</form>

Syntax

<element onreset="myScript">

object.onreset = function(){myScript};

object.addEventListener("reset", myScript);

Technical Details

Bubbles: Yes

Cancelable: Yes

Event type: Event

Supported HTML tags: <form>

DOM Version: Level 2 Events

Event Bubbling And Other Events.

Event bubbling is a method of event propagation in the HTML DOM API when an event is in

an element inside another element, and both elements have registered a handle to that

event. It is a process that starts with the element that triggered the event and then bubbles up

to the containing elements in the hierarchy.

Syntax:

addEventListener(type, listener, useCapture)

In JavaScript:

In HTML:

In JavaScript, using the addEventListener() method:

 type: Use to refer to the type of event.

 listener: Function we want to call when the event of the specified type occurs.
 userCapture: Boolean value. Boolean value indicates event phase. By Default useCapture

is false. It means it is in the bubbling phase.

XML:

XML (Extensible Markup Language) is a markup language similar to HTML, but

without predefined tags to use. Instead, you define your own tags designed specifically for

your needs. This is a powerful way to store data in a format that can be stored, searched, and

shared.

o Xml (eXtensible Markup Language) is a mark up language.

o XML is designed to store and transport data.

o Xml was released in late 90‘s. it was created to provide an easy to use and store self

describing data.

o XML became a W3C Recommendation on February 10, 1998.

o XML is not a replacement for HTML.

o XML is designed to be self-descriptive.

o XML is designed to carry data, not to display data.

o XML tags are not predefined. You must define your own tags.

o XML is platform independent and language independent.

Differences between XML and HTML

XML and HTML were designed with different goals:

 XML is designed to carry data emphasizing on what type of data it is.

 HTML is designed to display data emphasizing on how data looks

 XML tags are not predefined like HTML tags.

 HTML is a markup language whereas XML provides a framework for defining markup

languages.

 HTML is about displaying data,hence it is static whereas XML is about carrying

information,which makes it dynamic.

Structure of an XML document

Whole structure XML and XML based languages built on tags.

XML declaration

XML - declaration is not a tag. It is used for the transmission of the meta-data of a

document.

<?xml version="1.0" encoding="UTF-8"?>

Copy to Clipboard

https://developer.mozilla.org/en-US/docs/Web/XML/XML_introduction#structure_of_an_xml_document
https://developer.mozilla.org/en-US/docs/Glossary/Tag
https://developer.mozilla.org/en-US/docs/Web/XML/XML_introduction#xml_declaration

Attributes:

version:

Used version XML in this document.

encoding :

Used encoding in this document.

Comments

<!-- Comment -->

Copy to Clipboard

"Correct" XML (valid and well-formed)

Correct design rules

For an XML document to be correct, the following conditions must be fulfilled:

 Document must be well-formed.

 Document must conform to all XML syntax rules.

 Document must conform to semantic rules, which are usually set in an XML schema or a

DTD (Document Type Definition).

Example

<?xml version="1.0" encoding="UTF-8"?>

<message>

<warning>

Hello World

<!--missing </warning> -->

</message>

Now let's look at a corrected version of that same document:

<?xml version="1.0" encoding="UTF-8"?>

<message>

<warning>

Hello World

</warning>

</message>

Copy to Clipboard

A document that contains an undefined tag is invalid. For example, if we never defined

the <warning> tag, the document above wouldn't be valid.

Most browsers offer a debugger that can identify poorly-formed XML documents.

https://developer.mozilla.org/en-US/docs/Web/XML/XML_introduction#comments
https://developer.mozilla.org/en-US/docs/Web/XML/XML_introduction#correct_xml_valid_and_well-formed
https://developer.mozilla.org/en-US/docs/Web/XML/XML_introduction#correct_design_rules
https://developer.mozilla.org/en-US/docs/Glossary/Doctype
https://developer.mozilla.org/en-US/docs/Web/XML/XML_introduction#example

Entities

Like HTML, XML offers methods (called entities) for referring to some special reserved

characters (such as a greater than sign which is used for tags). There are five of these characters

that you should know:

Entity Character Description

< < Less than sign

> > Greater than sign

& & Ampersand

" " One double-quotation mark

' ' One apostrophe (or single-quotation mark)

Even though there are only 5 declared entities, more can be added using the

document's Document Type Definition.

For example, to create a new &warning; entity, you can do this:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE body [

<!ENTITY warning "Warning: Something bad happened... please refresh and try again.">

]>

<body>

<message>&warning;</message>

</body>

Copy to Clipboard

You can also use numeric character references to specify special characters; for example,

© is the "©" symbol.

Displaying XML

XML is usually used for descriptive purposes, but there are ways to display XML data. If

you don't define a specific way for the XML to be rendered, the raw XML is displayed in the

browser.

One way to style XML output is to specify CSS to apply to the document using the xml-

stylesheet processing instruction.

<?xml-stylesheet type="text/css" href="stylesheet.css"?>

Copy to Clipboard

There is also another more powerful way to display XML: the Extensible Stylesheet

Language Transformations (XSLT) which can be used to transform XML into other languages

such as HTML. This makes XML incredibly versatile.

<?xml-stylesheet type="text/xsl" href="transform.xsl"?>

Basics structuring Data

XML Tree Structure

https://developer.mozilla.org/en-US/docs/Web/XML/XML_introduction#entities
https://developer.mozilla.org/en-US/docs/Glossary/Doctype
https://developer.mozilla.org/en-US/docs/Web/XML/XML_introduction#displaying_xml
https://developer.mozilla.org/en-US/docs/Web/CSS
https://developer.mozilla.org/en-US/docs/Web/XSLT

XML documents are formed as element trees.

<root>

An XML tree starts at a root element and branches from the root to child
elements. All elements can have sub elements (child elements):

<child>

<subchild> </subchild>

</child>

</root>

The terms parent, child, and sibling are used to describe the relationships between

elements.

Parents have children. Children have parents. Siblings are children on the same level

(brothers and sisters).

All elements can have text content (Harry Potter) and attributes (category="cooking").

Self-Describing Syntax

XML uses a much self-describing syntax.

A prolog defines the XML version and the character encoding:

<?xml version="1.0" encoding="UTF-8"?>

The next line is the root element of the document:

<bookstore>

The next line starts a <book> element:

<book category="cooking">

The <book> elements have 4 child elements: <title>, <author>, <year>, <price>.

<title lang="en">Everyday Italian</title>

<author>Giada De Laurentiis</author>

<year>2005</year>

<price>30.00</price>

The next line ends the book element:

</book>

XML Name Spaces

XML Namespaces

XML Namespaces provide a method to avoid element name conflicts.

Name Conflicts

In XML, element names are defined by the developer. This often results in a conflict

when trying to mix XML documents from different XML applications.

This XML carries HTML table information:

<table>
<tr>

<td>Apples</td>

<td>Bananas</td>

</tr>

</table>

This XML carries information about a table (a piece of furniture):

<table>

<name>African Coffee Table</name>

<width>80</width>

<length>120</length>

</table>

If these XML fragments were added together, there would be a name conflict. Both

contain a <table> element, but the elements have different content and meaning.

A user or an XML application will not know how to handle these differences.

Solving the Name Conflict Using a Prefix

Name conflicts in XML can easily be avoided using a name prefix.

This XML carries information about an HTML table, and a piece of furniture:

<h:table>

<h:tr>

<h:td>Apples</h:td>

<h:td>Bananas</h:td>

</h:tr>

</h:table>

<f:table>

<f:name>African Coffee Table</f:name>

<f:width>80</f:width>

<f:length>120</f:length>

</f:table>

In the example above, there will be no conflict because the two <table> elements have

different names.

XML Namespaces - The xmlns Attribute

When using prefixes in XML, a namespace for the prefix must be defined.

The namespace can be defined by an xmlns attribute in the start tag of an element.

The namespace declaration has the following syntax. xmlns:prefix="URI".

<root>

<h:table xmlns:h="http://www.w3.org/TR/html4/">

<h:tr>

<h:td>Apples</h:td>

<h:td>Bananas</h:td>

</h:tr>

</h:table>

http://www.w3.org/TR/html4/

<f:table xmlns:f="https://www.w3schools.com/furniture">

<f:name>African Coffee Table</f:name>
<f:width>80</f:width>

<f:length>120</f:length>

</f:table>

</root>

In the example above:

The xmlns attribute in the first <table> element gives the h: prefix a qualified namespace.

The xmlns attribute in the second <table> element gives the f: prefix a qualified

namespace.

When a namespace is defined for an element, all child elements with the same prefix are

associated with the same namespace.

Namespaces can also be declared in the XML root element:

<root xmlns:h="http://www.w3.org/TR/html4/"

xmlns:f="https://www.w3schools.com/furniture">

<h:table>

<h:tr>

<h:td>Apples</h:td>

<h:td>Bananas</h:td>

</h:tr>

</h:table>

<f:table>

<f:name>African Coffee Table</f:name>

<f:width>80</f:width>

<f:length>120</f:length>

</f:table>

</root>

Note: The namespace URI is not used by the parser to look up information.

The purpose of using an URI is to give the namespace a unique name.

However, companies often use the namespace as a pointer to a web page containing

namespace information.

Uniform Resource Identifier (URI)

A Uniform Resource Identifier (URI) is a string of characters which identifies an
Internet Resource.

http://www.w3schools.com/furniture
http://www.w3.org/TR/html4/
http://www.w3schools.com/furniture

The most common URI is the Uniform Resource Locator (URL) which identifies an

Internet domain address. Another, not so common type of URI is the Uniform Resource

Name (URN).

Default Namespaces

Defining a default namespace for an element saves us from using prefixes in all the child
elements. It has the following syntax:

xmlns="namespaceURI"

This XML carries HTML table information:

<table xmlns="http://www.w3.org/TR/html4/">

<tr>

<td>Apples</td>

<td>Bananas</td>

</tr>

</table>

This XML carries information about a piece of furniture:

<table xmlns="https://www.w3schools.com/furniture">

<name>African Coffee Table</name>

<width>80</width>

<length>120</length>

</table>

Namespaces in Real Use

XSLT is a language that can be used to transform XML documents into other formats.

The XML document below, is a document used to transform XML into HTML.

The namespace "http://www.w3.org/1999/XSL/Transform" identifies XSLT elements

inside an HTML document:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<html>

<body>

<h2>My CD Collection</h2>

<table border="1">

<tr>

<th style="text-align:left">Title</th>

<th style="text-align:left">Artist</th>

</tr>

<xsl:for-each select="catalog/cd">

<tr>

<td><xsl:value-of select="title"/></td>

http://www.w3.org/TR/html4/
http://www.w3schools.com/furniture
http://www.w3.org/1999/XSL/Transform
http://www.w3.org/1999/XSL/Transform

<td><xsl:value-of select="artist"/></td>

</tr>
</xsl:for-each>

</table>

</body>

</html>

</xsl:template>

</xsl:stylesheet>

Document Type Definition – DTD

 Difficulty Level : Easy

 Last Updated : 06 Nov, 2020

A Document Type Definition (DTD) describes the tree structure of a document and something

about its data. It is a set of markup affirmations that actually define a type of document for the

SGML family, like GML, SGML, HTML, XML.

A DTD can be declared inside an XML document as inline or as an external recommendation.

DTD determines how many times a node should appear, and how their child nodes are ordered.

There are 2 data types, PCDATA and CDATA

 PCDATA is parsed character data.

 CDATA is character data, not usually parsed.

Why Use a DTD?

With a DTD, independent groups of people can agree on a standard DTD for

interchanging data.

An application can use a DTD to verify that XML data is valid.

An Internal DTD Declaration

If the DTD is declared inside the XML file, it must be wrapped inside the <!DOCTYPE>
definition:

 XML document with an internal DTD

<?xml version="1.0"?>

<!DOCTYPE note [

<!ELEMENT note (to,from,heading,body)>

<!ELEMENT to (#PCDATA)>

<!ELEMENT from (#PCDATA)>

<!ELEMENT heading (#PCDATA)>

<!ELEMENT body (#PCDATA)>

]>

<note>

<to>Tove</to>

<from>Jani</from>

https://www.geeksforgeeks.org/easy/

<heading>Reminder</heading>

<body>Don't forget me this weekend</body>
</note>

The DTD above is interpreted like this:

 !DOCTYPE note defines that the root element of this document is note

 !ELEMENT note defines that the note element must contain four elements:

"to,from,heading,body"

 !ELEMENT to defines the to element to be of type "#PCDATA"

 !ELEMENT from defines the from element to be of type "#PCDATA"

 !ELEMENT heading defines the heading element to be of type "#PCDATA"

 !ELEMENT body defines the body element to be of type "#PCDATA"

An External DTD Declaration

If the DTD is declared in an external file, the <!DOCTYPE> definition must contain a

reference to the DTD file:

 XML document with a reference to an external DTD

<?xml version="1.0"?>

<!DOCTYPE note SYSTEM "note.dtd">

<note>

<to>Tove</to>

<from>Jani</from>

<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>

</note>

And here is the file "note.dtd", which contains the DTD:

<!ELEMENT note (to,from,heading,body)>

<!ELEMENT to (#PCDATA)>

<!ELEMENT from (#PCDATA)>

<!ELEMENT heading (#PCDATA)>

<!ELEMENT body (#PCDATA)>

 W3C XML schema documents

What is an XML Schema?

An XML Schema describes the structure of an XML document.

The XML Schema language is also referred to as XML Schema Definition (XSD).

 XSD Example

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

In the XML file, select "view source" to view the DTD.

http://www.w3.org/2001/XMLSchema

<xs:element name="note">

<xs:complexType>
<xs:sequence>

<xs:element name="to" type="xs:string"/>

<xs:element name="from" type="xs:string"/>

<xs:element name="heading" type="xs:string"/>

<xs:element name="body" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:schema>

The purpose of an XML Schema is to define the legal building blocks of an XML document:

 the elements and attributes that can appear in a document

 the number of (and order of) child elements

 data types for elements and attributes

 default and fixed values for elements and attributes

Why Learn XML Schema?

In the XML world, hundreds of standardized XML formats are in daily use.

Many of these XML standards are defined by XML Schemas.

XML Schema is an XML-based (and more powerful) alternative to DTD.

XML Schemas Support Data Types

One of the greatest strength of XML Schemas is the support for data types.

 It is easier to describe allowable document content

 It is easier to validate the correctness of data

 It is easier to define data facets (restrictions on data)

 It is easier to define data patterns (data formats)

 It is easier to convert data between different data types

XML Schemas use XML Syntax

Another great strength about XML Schemas is that they are written in XML.

 You don't have to learn a new language

 You can use your XML editor to edit your Schema files

 You can use your XML parser to parse your Schema files

 You can manipulate your Schema with the XML DOM

 You can transform your Schema with XSLT

XML Schemas are extensible, because they are written in XML.

With an extensible Schema definition you can:

 Reuse your Schema in other Schemas

 Create your own data types derived from the standard types

 Reference multiple schemas in the same document

XML Schemas Secure Data Communication

When sending data from a sender to a receiver, it is essential that both parts have the
same "expectations" about the content.

With XML Schemas, the sender can describe the data in a way that the receiver will

understand.

A date like: "03-11-2004" will, in some countries, be interpreted as 3.November and in

other countries as 11.March.

However, an XML element with a data type like this:

<date type="date">2004-03-11</date>

ensures a mutual understanding of the content, because the XML data type "date"

requires the format "YYYY-MM-DD".

Well-Formed is Not Enough

A well-formed XML document is a document that conforms to the XML syntax rules, like:

 it must begin with the XML declaration

 it must have one unique root element

 start-tags must have matching end-tags

 elements are case sensitive

 all elements must be closed

 all elements must be properly nested

 all attribute values must be quoted

 entities must be used for special characters

Even if documents are well-formed they can still contain errors, and those errors can have
serious consequences.

Think of the following situation: you order 5 gross of laser printers, instead of 5 laser printers.

With XML Schemas, most of these errors can be caught by your validating software.

 XML Vocabularies

XML vocabularies are the elements used in particular applications or data formats - the

definitions of the meanings of those formats. For example, in CDF, element names such as

<SCHEDULE>, <CHANNEL>, and <ITEM> make up the vocabulary for describing collections

of pages, when these pages should be downloaded, etc.

Vocabularies, along with the structural relationships between the elements, are defined in

XML DTDs or XML schemas.

Book XML vocabulary - just for marking up book data:

<Book>

<Title>The Wisdom of Crowds</Title>

<Classification>non-fiction</Classification>

<Author>James Surowiecki</Author>

</Book>
Music XML vocabulary - just for marking up music data:

<Musical-Score>

<Work>Winterreise</Work>

<Genre>classical</Genre>

<Composer>Franz Schubert</Composer>

</Musical-Song>

Here the same data is marked up, this time using a single generic XML vocabulary:

Composition XML vocabulary - for marking up any literary data:

<Compositionclass="Book">

<Title>The Wisdom of Crowds</Title>

<Category>non-fiction</Category>

<Creator>James Surowiecki</Creator>

</Composition>

<Compositionclass="Musical-Score">

<Title>Winterreise</Title>

<Category>classical</Category>

<Creator>Franz Schubert</Creator>

</Composition>

XSLT

What is XSLT

Before XSLT, first we should learn about XSL. XSL stands for EXtensible Stylesheet

Language. It is a styling language for XML just like CSS is a styling language for HTML.

XSLT stands for XSL Transformation. It is used to transform XML documents into other

formats (like transforming XML into HTML).

What is XSL

In HTML documents, tags are predefined but in XML documents, tags are not

predefined. World Wide Web Consortium (W3C) developed XSL to understand and style an

XML document, which can act as XML based Stylesheet Language.

An XSL document specifies how a browser should render an XML document.

Main parts of XSL Document

o XSLT: It is a language for transforming XML documents into various other types of

documents.

o XPath: It is a language for navigating in XML documents.

o XQuery: It is a language for querying XML documents.

o XSL-FO: It is a language for formatting XML documents.

How XSLT Works

The XSLT stylesheet is written in XML format. It is used to define the transformation

rules to be applied on the target XML document. The XSLT processor takes the XSLT stylesheet

and applies the transformation rules on the target XML document and then it generates a

formatted document in the form of XML, HTML, or text format. At the end it is used by XSLT

formatter to generate the actual output and displayed on the end-user.

Image representation:

Advantage of XSLT

A list of advantages of using XSLT:

o XSLT provides an easy way to merge XML data into presentation because it applies user

defined transformations to an XML document and the output can be HTML, XML, or

any other structured document.

o XSLT provides Xpath to locate elements/attribute within an XML document. So it is

more convenient way to traverse an XML document rather than a traditional way, by

using scripting language.

o XSLT is template based. So it is more resilient to changes in documents than low level

DOM and SAX.

o By using XML and XSLT, the application UI script will look clean and will be easier to

maintain.

o XSLT templates are based on XPath pattern which is very powerful in terms of

performance to process the XML document.

o XSLT can be used as a validation language as it uses tree-pattern-matching approach.

o You can change the output simply modifying the transformations in XSL files.

Summary:

 There are three ways to assign an event handler: HTML event handler attribute, element‘s

event handler property, and addEventListener().

 Assign an event handler via the HTML event handler attributes should be avoided.

 In this tutorial, you will learn the various ways to perform event handling in JavaScript.

The Document Object Model API. The Document Object Model, or “DOM,” is a cross-

language API from the World Wide Web Consortium (W3C) for accessing and modifying XML

documents. A DOM implementation presents an XML document as a tree structure, or allows

client code to build such a structure from scratch.

Questions:

1. Describe Document Object Model (DOM)?

2. Explain about Events?

3. Define XML?

4. Explain in detail about XML schema documents and XML Name Spaces?

5. Explain XSLT?

	III YEAR – V SEMESTER COURSE CODE: 7BCEE1B
	Unit I
	Unit II
	Unit III
	Unit IV
	Unit V
	Text Book:
	Book for Reference:
	Course Outcome:
	Unit I Mind Map
	Introduction to HTML:
	Markup Languages
	Internet Commerce is great!
	Nesting HTML Tags
	To Do:
	Editing Html
	Getting started with HTML
	Common Tags
	Structuring your HTML document
	Loading your HTML file on Tomcat
	Header
	Headings
	Text Styling
	Background Color
	Example
	Text Color
	Fonts
	Example (1)
	Text Size
	Example (2)
	Text Alignment
	Example (3)
	Linking
	Example (4)
	Attributes
	Event Attributes
	Images
	Attributes (1)
	Event Attributes (1)
	Example Global Attributes
	Event Attributes (2)
	Formatting Text
	HTML Formatting Elements
	HTML and Elements
	Example (5)
	Example (6)
	HTML <i> and Elements
	Example (7)
	Example (8)
	HTML <small> Element
	Example (9)
	Example (10)
	Example (11)
	HTML <ins> Element
	Example (12)
	HTML <sub> Element
	HTML <sup> Element
	HTML Text Formatting Elements
	Example (13)
	Will display as:
	Horizontal Rules
	Line Breaks
	HTML Tip - How to View HTML Source
	Using headings, horizontal rules and meta tags Paragraphs, Line Breaks and Preformatting
	Lists
	Unordered List
	Type Description
	Tables and Formatting What is a Table?
	Why do We Use Tables?
	To Do
	Creating a Data Table
	Creating a Table
	Table with one row and two columns
	Table with centered text
	Table with caption and text with different font
	To Do (1)
	HTML tag
	Comments
	HTML Color Table
	To Do (2)
	Using Tables in Page Design
	Advantages:
	Disadvantages:
	Forms
	Processing Forms
	Creating Forms
	Starting a Form
	To Do (3)
	To Do (4)
	Radio Buttons
	CHECKED
	To Do (5)
	Radio Buttons (1)
	CHECKED (1)
	Check Boxes
	Linking Anchors
	Simple hypertext links
	Linking to Email Addresses & other Non-Web Links
	Linking to Sections within Documents
	Linking to sections within a document
	Section two
	Targeting Windows
	Frames.
	iframes Elements
	Create a web page with a multiple frames
	Set Width and Height
	Remove the Border
	Use iframe as a Target for a Link
	Target iframe
	Advantages and disadvantages of iframes
	To Do (6)

	Summary:
	Questions:
	UNIT II
	BODY {
	Advantages of Style Sheets
	To Do
	Important Note about Rules
	Inline styles
	Embedded Style Sheets
	Linking it
	Importing it
	Linking External Style Sheets
	Syntax
	HTML file
	Output
	CSS file
	Output (1)
	position: sticky;
	Positioning Text in an Image
	Example
	Example (1)
	Note: Remember that the height and width properties do not include padding, borders, or margins! They set the height/width of the area inside the padding, border, and margin of the element!
	= 350px
	Media Types
	Example (2)
	Dropdown Image
	Dropdown Navbar

	Summary: (1)
	Questions: (1)
	Unit III Mind Map
	Java Script: Introduction
	Control Structures
	If Structure
	Syntax
	The else if Statement
	Syntax (1)
	Do/While Structure While Structure
	The While Loop
	Syntax (2)
	Example
	The Do While Loop
	Syntax (3)
	Example (1)
	JavaScript Assignment Operators
	Increment and Decrement Operators
	For Structure
	JavaScript Loops
	Different Kinds of Loops
	The For Loop
	Example (2)
	Switch Structure
	Output of the above example

	Break and Continue Statement
	The Break Statement
	The Continue Statement
	JavaScript Labels
	switch.
	Logical Operators

	Summary: (2)
	Questions: (2)
	Unit IV Mind Map
	Advantage of JavaScript function

	JavaScript Function Syntax
	FunctionDefinitions
	(parameter1, parameter2, ...)

	Function Invocation
	Function Return
	Why Functions?
	The () Operator Invokes the Function
	Functions Used as Variable Values
	Local Variables
	Duration of Identifiers
	JavaScript Variables
	JavaScript Operators
	JavaScript Expressions
	JavaScript Keywords
	JavaScript Comments
	JavaScript Identifiers / Names
	JavaScript is Case Sensitive
	JavaScript and Camel Case
	Hyphens:
	Underscore:
	Upper Camel Case (Pascal Case):
	Lower Camel Case:
	JavaScript Character Set
	Scope Rules
	Local Scope
	Function Scope
	Global JavaScript Variables
	Global Scope
	JavaScript Variables (1)
	Automatically Global
	Strict Mode
	Global Variables in HTML
	Warning
	Function Arguments
	Recursion
	Recursion Example
	Halting Condition
	Recursion Vs Iteration
	Global Functions
	Java Script Arrays:
	Why Use Arrays?
	Declaring and Allocating Arrays
	Using the JavaScript Keyword new
	References and Reference Parameters
	Changing an Array Element
	Access the Full Array
	Arrays are Objects
	Array Elements Can Be Objects
	Passing Arrays to Functions
	The length Property
	Accessing the First Array Element
	Accessing the Last Array Element
	Adding Array Elements
	Sorting an Array
	Reversing an Array
	Numeric Sort
	The Compare Function
	Example:
	Sorting an Array in Random Order
	The Fisher Yates Method
	Find the Highest (or Lowest) Array Value
	Using Math.max() on an Array
	Using Math.min() on an Array
	My Min / Max JavaScript Methods
	Sorting Object Arrays
	Searching Arrays
	Definition and Usage
	Syntax
	Parameters
	Multiple-Subscripted Arrays
	Java Script Objects:
	JavaScript Primitives
	Objects are Variables
	Object Properties
	Object Methods
	Creating a JavaScript Object
	Using an Object Literal
	Using the JavaScript Keyword new (1)
	JavaScript Objects are Mutable
	Math Object
	The Math Object
	Math Properties (Constants)
	Math Methods
	Number to Integer
	Math.round()
	Math.ceil()
	Math.floor()
	Math.trunc()
	Math.sign()
	Math.pow()
	Math.sqrt()
	Math.abs()
	Math.sin()
	Math.cos()
	Math.min() and Math.max()
	Math.random()
	The Math.log() Method
	The Math.log2() Method
	The Math.log10() Method
	JavaScript Math Methods
	String Properties
	String Methods
	String HTML Wrappers
	Date Object
	Wed Mar 23 2022 14:33:23 GMT+0530 (India Standard Time)
	JavaScript Date Output
	Wed Mar 23 2022 14:33:23 GMT+0530 (India Standard Time) (1)
	new Date()
	Using 6, 4, 3, or 2 Numbers
	Previous Century
	JavaScript Stores Dates as Milliseconds
	Date Methods
	Displaying Dates
	Boolean and Number Object
	Boolean Properties
	Boolean Methods
	Document Object
	Window Object.

	Summary: (3)
	Questions: (3)
	Unit V
	Document Object Model (DOM):
	Modeling a document
	DOM representation of the example table
	DOM Nodes
	Node Relationships
	Navigating Between Nodes
	Child Nodes and Node Values
	Example
	InnerHTML
	DOM Root Nodes
	The nodeName Property
	The nodeValue Property
	The nodeType Property
	DOM collections and Dynamic styles
	The HTMLCollection Object
	Example (1)
	HTML HTMLCollection Length
	Example (2)
	Example (3)
	Registering Event Handlers
	What does it mean to "handle an event"?
	What are the different types of events?
	Different phases of events - capture, target, bubble
	1) HTML event handler attributes
	2) DOM Level 0 event handlers
	3) DOM Level 2 event handlers
	The addEventListener() method
	The removeEventListener() method
	onload
	The event Object and this
	Event Properties and Methods
	on mouseover and on mouseout
	onfocus and onblur
	onfocus Example

	onsubmit:
	Example:
	Onreset
	Event Bubbling And Other Events.
	XML:
	Structure of an XML document
	XML declaration
	Comments
	"Correct" XML (valid and well-formed)
	Example
	Basics structuring Data
	Self-Describing Syntax
	Name Conflicts
	Solving the Name Conflict Using a Prefix
	In the example above:
	Uniform Resource Identifier (URI)
	Default Namespaces
	Namespaces in Real Use
	Why Use a DTD?
	An Internal DTD Declaration
	An External DTD Declaration
	W3C XML schema documents What is an XML Schema?
	Why Learn XML Schema?
	XML Schemas use XML Syntax
	XML Schemas Secure Data Communication
	Well-Formed is Not Enough
	XML Vocabularies
	XSLT
	What is XSL
	Main parts of XSL Document
	How XSLT Works
	Questions:

