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SYLLABUS
COURSE CODE: TMMA3C2
TOPOLOGY -1

Unit |

Topological Spaces — Basis of a topology — the order topology — the product topology on XxY—
the subspace topology — closed sets and limit points.

Unit 11

Continuous functions — the product topology — the metric topology — the quotient topology.

Unit 111

Connected spaces — connected sets in the real line — components and path components — local
connectedness.

Unit IV
Compact spaces — compact sets in the real line — limit point compactness.

Unit vV

The countability axioms - the separation axioms — the Urysohn’s lemma - the
Uryshon’smetrization theorem.

Text Book
James R.Munkres, Topology a first course, Prentice Hall of India Pvt. Ltd.,New Delhi (1987)

Chapter 11 : (Sections 2.1 to 2.10)
Chapter 11l (Sections 3.1 to 3.4)
Chapter IV : (Sections 3.5 t0 3.7)
Chapter V : (Sections 4.1 to 4.4)

Books for Supplementary Reading and Reference:

1. James Dugundji, Topology, Prentice Hall of India, New Delhi, 1975.
2. George F.Simmons, Introduction to Topology and Modern Analysis, McGraw Hill Book Co.,
1963.
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COURSE OUTCOME

Topology — |

TMMASC2

Co1

They get the knowledge Topological
Spaces, Basis of a topology , the order
topology , the product topology on
XXY, the subspace topology, closed
sets and limit points.

CO2

To know about the concept of
Continuous functions, the product
topology , the metric topology , the
quotient topology.

CO3

They can understandConnected
spaces , connected sets in the real line ,
components and path components
local connectedness.

CO4

They get the knowledge
Compact spaces , compact sets in the
real line — limit point compactness.

CO5

Understand the The countability
axioms , the separation axioms

CO6

To know the Urysohn’s lemma
, the Uryshon’s metrization theorem.
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Unit |

Basis of a topology

Closed sets and Limit

s The order topology

The subspace topology The product topology
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Content

e Topological Spaces

e Finite Complement Topology

e Union and Intersection of topologies
e Basis of a topology

e The order topology

e The product topology on XxY

e The subspace topology

e Closed sets and limit points.
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TOPOLOGICAL SPACE

TOPOLOGY:

Let X be a non-empty set. Let tbe a collection of subset of X.
tis said to be topology on X.Iftsatisfies the followingcondition.

1. §,Xer
2. ArAo......... AnEt=N[L 4, ET
3. V€T AET=Uge Ag €T

The pair (X,t) is called a topological space .

Note:1

The members of t are called the open sets in X (or) T open set in X.
Note:2

IF ( X, 7) is topological space then the element of X are called points.
Example:1

Let X be any set and tbe the collection of all subsets of X.Thent is the topology on X . This topology Ttis
called discrete topology.

Example:2

Trivial topology (or) in discrete topology .The collection consisting of X and @only is also a topology on
X.

Then it is said to be trivial topology (or) indiscrete topology.
Example:3

Let X={a,b,c}

C is the collection of subset of X then

C={{a}.{b}. . {c}.{ab}.{b,c} {ca} X,0}

t=1{ {a},{a,b}, X ,0}

Therefore , T satisfies the topology.

FINITE COMPLEMENT TOPOLOGY :

X be a set.Lettr be the collection of subsets of U(X) such that X — U either is finite (or) is all of X then 1¢
is a topology on X called the finite complement topology.

RESULT:1
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The intersection of two topology is again a topology.
Let 11 and 12 be the two topology on X
To prove:
11 and T2 IS a topology on X
1. 0Q€n , Qer
=0enN1
Xetry , XEnw

= X enNmn
=0, Xenunmn

2. Let Ay, Ao........... AnetiNt
= Ay, Ao An€Ti andNjL; 4;€1
Similarly ,Nj2, 4;E12
=N 4;€uNt

3. A€t
=AE11&aET
:Uaej Ay ET1
=AET&AET
=Uqe A ET
=Ugej Ag€ulNt
~t1N12 1satopology on X.

RESULT : 2

The union of the topology need not be the topology
Let X={a,b,c}

1u={0, X, {a}}

©2={0, X, {b}}

Then 11 and 12 are topology on x.

Now,
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nUn={0, X, {b}}

{a} enlUr

{b} en1Ur

{a}U{b}={a,b}¢nUr

~11U72 is not a topology on X

~The union of the topology need not be the topology.
DEFINITION:

Let X have two topology t&t’ .We say that 7 is finer than ©’(t21)
Basis for a topology

Let X be a non empty set .Let B be a collection of subset of X
B is called a basis if its satisfies the following condition

I. VvxeX, 3IBeB> : xeB
IR Vv x€ B1NB>; Where B1,B.€B

3 B3eB3 : x €Bsc BiNB:

Note:

The element in a basis are called basis element .The element in a topology are called open sets.
Let X be a non empty set . Let B be a basis of X.

Thus topology T generated by the basis B is define as follows,

U is open in X&VxeU [(i.e)UET]there exists BEB3: xeBc U

NOTE :

Every basis element is an open set

LEMMA :

Let X be a non empty set .let A topologyT on X .Then ¢’is equal to collection of all union of
elements of B.

Given is a basis for the topology T on X
Letz’ be the collection of all union of elements of
To prove:

Tisequal to T’
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(i.e) to prove

b

l. ICT
IR T’'Cct

T’

Let U ez=U is open in X (by definition)
=VxeU3IBxeB

=XEBxc U (by definition)

= U = UxeuBx

= U is the union of basis of elements

=Uer

Let vet’= v=UqeBq Where B.EB

=B.is a basis element

=B, is open in X [member of 7 is open in X]
=B.€ET

Butz is a topology

=UqerBET

~From (1) & (2)
T=7

LEMMA:

Let B and B’ be a basis for the topology T and t’ respectively on X. Then the following are
equivalent.

i. tTisfinerthant
ii. For each xe X and each basis element BEBcx there is a basis element B'cB’3:xeB'cB
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()=(ii)

Assume that

T’ isfiner than T
(ie)r’oT or TCT

Let xe X and B €B be a basis element and xeB
BeB= B isopenin X
= Ber

= BeTt’ [since TCT’]
= BeB’ vxeB

= There exists B'eB’ such that x eB'=>xeB'cB
Hence (i)=(ii)

(i)=(i)

xeX and BEBc X

(ie) TcT

Let Uet

= Uisopenin X
=VxeU

= BeB

Such that xeBcU

XeU = xe X. [~UX)]
By hypothesis,

There existsB'eB’

Such that xeB'c B

(ie) xeB'c BcU

=U is open
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= Uer’

STCT

Hence 7’ is finer than t.

SUMMARY

Topology is a relatively new branch of mathematics; most of the research in topology has been
done since 1900.

Topology studies properties of spaces that are invariant under any continuous deformation.

Topological concepts and methods underlie much of modern mathematics.

Topological approach has clarified very basic structural concepts in many of its branches.

QUESTIONS

NooakownE

Define Topological Space.
Explain the example of a topological space.

Define Metrizable Space.

Define Quotient topology.

Define linear continuum.

Define Path connected.

Prove that the rational number Q are not connect5. Let B and B’ be a basis for the topology T and

T’ respectively on X. Then the following are equivalent.

(@)’ is finer than T (b)For each xe X and each basis element BEBcx there is a basis element

B'cB’3:xeB'cB.

Prove that X be a non empty set .let A topologyT on X .Then t’is equal to collection of all union
of elements of B.
The topologies on R"induced by the Euclidean metric d and the square metric R are the same as

the product topology on R™That isR"is Metrizable.

10. State and prove sequence lemma.
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Unit 11

Continuous functions

Defintions and examples Theorems

The metric topology

Defintions and examples Theorems

The quotiont topology

Defintions and examples Theorems
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Content:

Continuous functions
The product topology
The metric topology
The quotient topology.

O O O O

CONTINUOUS FUNCTION:

Let X and Y are topological spaces. A function f: X—Y is said to be Continuous if for each open
subset V(Y),the set f~1(v) is an open subset of X.

THEOREM:
Let X and Y be topological space. Let f: X —Y then the following are equivalent

Q) f is continuous.

(i) For every closed set B of X the set f~1 (B) is closed in X.

(iii)  For every subset A of X, one has f(4) c F(A).

(iv)  For each x € X and each neighbourhood U of X such that f(u)=v.

(H)=(ii)
Assume that,
f is continuous.
To prove:
f(A) c f(A)V Aisa subset of X.
Let Ac X
Lety € f(A)

=y=f(x),x€A
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= Yopen set containing X intersect A.

To prove:
y € fA
Let v be a neighbourhood of y that intersect f(A).
ie)y€Ev
=YVEUV
= f(x)€Ev

= x € f1(v)

f:X =Y is continuous
VisopeninY

} = f~I(v)is openin x.
= f~1(v)is open in x.

But xe A= fTl(w)nA#¢

Letae f7l(v)NA

=a€fl(v)&a€A

= f(a) €evnf(a) € f(4)
= f(a) evn f(A)
S vnf(a) £ 0
=The open set v in y containing intersect f(4).
Therefore y € f(A)
Therefore f(4) c f(A4)
(i) = (iii)
Assume that,f(4) c f(A) V A is a subset of X.
Let B be closed iny.
To prove:

f~Y(B)is closed in X.
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Let A=f~H(B) - (4)
f(4) =B - (B)
To Prove:
Alis closed in X.
(ie) to prove A=(4)
We know that,
Aisasubset of (4) » (1)
Claim,
(A)is a subset of A
[sincef (4) < £(A)]
Letx € (A) = f(x) € f(A)
= f(x) € f(A)
= f(x) €B
= f(x) €B
= x € f71(B)
= x€EA
Therefore A c A - (2)
From (1) & (2)
A=A
Therefore Ais closed in X.
(ie)f ~1(B) is closed in X.
(ii=()
Assume that, B is closed in y.

= f~1(B)is closed in X.
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To Prove:
f is continuous
v be openiny.
= y —visclosed iny.
= f~(y — v)is closed in x.
= f~1(y) — f~(v)is closed in x.
= f~1(v)isopen in x.
= fis continuous
(H=(iv)
Assume that,
fis continuous
To prove:

For each x € X and each neighbourhood v of f(x) there isneighbourhood u of x such that f(u) c v.
Letx € X
Let v be a neighbourhoodoff (x).
To Prove:

f(w)cv

[thereforef is continuous]
U=f"1(v) is a neighbourhood of X.
f(w)is a subset of v
(ie) f(w) c v
(iv)=(i)
Assume that,
For each x € X and each neighbourhood v of f(x), there is neighbourhood v of x, such that f (u) c v.

To Prove:
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fis continuous.
Let v be an open set of v.
Let x be a point of f~1(v).
=x € f1(v)
=f(x)ev
So that by hypothesis,
There is an neighbourhoodu, of x such that f(u,)) c v.
Then u, c f~1(v)
= f~1(v)is union of open set u, so that
Itis open
Hence f is continuous.
Homeomorphism:

Let X and Y be topological space .

Let f: X — Y be a bijection. If both the function f and the inverse function.

f~1:Y — Xare continuous then f is called a Homeomorphism.

Definition:

Given X such that

X=  [IX;

or the (possibly infinite) Cartesian product of the topological spaces
Xi, indexed by i, the box topology on X is generated by the base

B={I1 Ui/ U; is open}

The name box comes from the case of R", in which the basis sets look like boxes. The

set endowed with the box topology is sometimes denoted by

Box topology on R®:

e The box topology is completely regular
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https://en.wikipedia.org/wiki/Index_set
https://en.wikipedia.org/wiki/Basis_(topology)
https://en.wikipedia.org/wiki/Completely_regular

e The box topology is neither compact nor connected

e The box topology is not first countable (hence not metrizable)

e The box topology is not separable

e The box topology is paracompact (and hence normal and completely regular) if

the continuum hypothesis is true

SUMMARY

e Topology is sometimes called "rubber-sheet geometry" because the objects can be stretched and
contracted like rubber, but cannot be broken.
e In mathematics, the study of the properties of a geometric object that remains unchanged by

deformations such as bending, stretching, or squeezing but not breaking.

QUESTIONS
1. Define Hausdroff Space
2. Define the K topology on the real line.

3. Show that the intersection of two topology is again a topology and the union need not
be a topology

4. Let B and B’ be a basis for the topology T and T’ respectively on X then the following are
equivalent (a) 7’ is finer than t (b) for each x in X and each basis element B € B[ X there

is a basis element B’[# B such that x € B’[=] B.

5. Define the subspace topology. For a subset Y of a topological space X,

Define 7, = {Y N U/U € t}. Prove that 7,, is a topology.

6. Show that every finite point set in a Hausdroff space X is closed.

7. Let X be a topological space. Prove that the following conditions holds
(1) @ and X are closed.
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(i) Arbitrary intersection of closed sets are closed.

(iii)Finite intersection of closed sets are closed.

8. Every simply ordered ser is a Hausdroff space in the order topology.(i) A subspace of
Hausdroff space is Hausdroff space. (ii) The product of two Haudroff space is a Hausdroff

space.
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Unit 111

Connected
spaces

Connected
sets in the
real line

components and
path components
— local
connectedness.

Department of Mathematics, URCW Page 20



Content
e Connected spaces
e Connected sets in the real line
e Pasting Lemma
e Components and path components

e Local connectedness
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DEFINITION:

A topological space (X, T ) is said to be disconnected if there exist disjoint nonempty subsets A, B € X
suchthat X=AtB,and ANB=ANB=0.

If (X, T) is not disconnected, it is said to be connected. Just like with compactness we will often refer to
subsets of topological spaces being connected, and in doing so we mean that the subset with its subspace
topology is connected. Before going on, we state some of the many equivalent forms of this definition.
The proof that these are all equivalent is basically immediate.

THOREM: The following are equivalent for a topological space (X, T ).

1. (X, T) is disconnected.

2. There exist nonempty, disjoint, open sets A, B € X such that X = At B.
3. There exist nonempty, disjoint, closed sets A, B € X such that X = At B.

4. There is a nontrivial closed subset of X. That is, there is a subset A € X that is both open and closed,
and A is not X or @.

THEOREM :

THE PASTING LEMMA.

Let X and Y be topological space. Let X=A U B where
A and B are closed in X.Let f:A— X and g:B — Y be
continuous. If f(X) = g(X) for every X € AN B then f and g
combined to give a continuous function h: X — Y defined
by setting h(X) = f(X) if X€ A and h(X) = g(X) if X€ B.
PROOF:
Given X=AUB and A, B are closed in X.
f:A— X and g:B — Y are continuous.

Let h: X =Y by h(x)=f(x)for all xe A and h(x) =

g (x) for all x € B.
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f(X)=9(x). for all xe AN B.
To prove :h: X Y.
Let C be a closed set in Y.
To prove:h"-1(c)=™-1(c)Ugr1l(c).
Let xe h”"-1(c).
©h (x) € C.
of(x)eC, for all xe A.
oxe -1 ( c).
(Or)
oxe gh-1 (C).
oxe fA-1 (C) U gh-1 (C).
~h"-1(C)=f-1(C)Ugr1(C).
~C is closed set in Y and f:A — xis continuous.
=f*-1(C) is closed in A.
fA-1(C) is closed in A and A is closed in X.
=f*-1(C)is closed in X.
Similarly g”-1(C) is closed in X.
~fA-1(C)U g*-1(C) is closed in X.
(ie) h"-1(C) is closed in X.
~h is continuous.

DEFINITION:

Let J be an index set. Given a set X. We define a
J- tuple of elements of X to be a function X: J = X, If o« is an
Element of J, we often denote the value of X at « by X «,

rather than X () iscalled if the octh coordinate of X.
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And we often denote the function X itself by the

symbol ( X «x) «xe J which is as close as we can come to a
“tuple notation “ for an arbitrary index set J. We denote the
set of all J- Tuples of elements of X by X~J.

THEOREM :

MAPS INTO PRODUCTS.

Let X and Y betopological space. Let f: A —= X XY be

Given by the equation f(a) =(fl(a),f2(a)) then f is continuous iff the functions f1 :A — X; 2
: A— Y are continuous.

PROOF:
Given: f: A— XXY.
f(a= (fL (@), f2()).
Assume that f is continuous.
To prove:fl: A — X, f2: A—Y are continuous.
Consider w1l : XxY = X by nl(x,y) =x.
To prove: m 1 is continuous.
Let U be open in X
To prove : w1l ~-1(U) is open in XXY.
7l (UxY) =U.
>al -1(U)=UxY.
U is open in X and Y is open in Y.
=>UXY is open in XXY.
nl~-1(U) is open in XXY.
nl is continuous.

nl : X xY — X are continuous.
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~ml of: A — X is continuous.
Now (ml of) (a) ==l (f(a)).
=n1(fl(a),2(a)).
(ml of) (a) =1l (a), for all a € A.
nl of= f1.
~ml of: A— X is continuous.
=fl: A — X is continuous.

Similarly = f2: A — Y is continuous.
Conversely,
Assume that f1: A — X and f2: A — Y are continuous.
To prove:f: A— XxY is continuous.
Let UxV be open in XXY.
= U is open in X and V is open in X.
To prove: A -1 (UXxV) is open in A.
First we prove that: -1 (UxV)=f1~-1(U)f27-1(V).
Let ae -1 (UxV) s f(a)eUx V.
o(fl(a),f2(a)) e Ux V.
o fl(a)eU,f2(a)eV.

Saefl A1 (U),aefA-1 (V).

fA-1(UxV)=f17r-1(U)NR"-1(V).
U is open in X and f1: A — X is continuous.
= f1l~-1(U) is open in A

V is open in Y and f2: A — Y is continuous.
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=>f27-1(V) is open in A
~fIA-1(U) Nf272-1(V) is open in A.
(ie).f17-1(UxV) is open in A

~ f is continuous.

DEFINITION:

Let { Ax} xeJ be an indexed family of sets. Let X=U
A x.The Cartesian product of this indexed family, denoted by
n A« is defined to be the set of all J—tuples (X ) xeJ of
elements of X such that X xe A« for each e J.

(ie). It is the set of all functions X:J = U A o« such that
X (a) € X for each «€ J.

DEFINITION :

Let { Xx} xeJ be an indexed family of topological
spaces. Let us take as a basis for a topology on the product
Space. 1 X « the collection of all sets of the form n U < where
U o is open in X « for each «e€ J. The topology generated by
this basis is called the box topology.

SUMMARY

e A sphere is topologically equivalent to a cube because, without breaking them, each can be
deformed into the other as if they were made of modeling clay.
e It is used in many branches of mathematics, such as differentiable equations, dynamical systems,

knot theory, and Riemann surfaces in complex analysis.

QUESTIONS
1. Define Box Topology
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2. Define Product Topology
3. State and Prove Pasting Lemma
4. Prove that Composition of two continuous topological spaces is continuous.

5. State and Prove Sequence Lemma

6. Let X be a metric space. Prove that d is a metric that induced the same topology as d, where d
(x,y)= min {d(x,y), 1}

7. State and Prove Uniform limit theorem

8. Prove that the topological on R" induced by the Euclidean metric d and the square metric |=| are
the same as the product topology on R“
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Unit IV

Compact spaces

compact sets in the real line

limit point compactness.
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Content

e Compact spaces
e Compact sets in the real line

e Limit point compactness

Department of Mathematics, URCW Page 29



Definition:

A topological space X is compact if every open cover has a finite sub cover. More precisely, if  X=U;
elUi for some collection {U; : i€l} of open sets indexed by a set | then there is a finite subset JcI such

that X=Uie;Ui.

Theorem:

A) A subspace of a hausdroff space is hausdroff,a product of hausdroff space is hausdroff.
B) A subspace of a regular space is regular, a product of regular space is regular.

Proof:
a) Let x be a hausdroff space and let x and y be two points of the subspace y of x.
If Uand V are disjoint neighbourhood in X of x and y respectively.
Then,UNY and VNY are disjoint neighbourhood of x and y in Y.
Hence a subspace of hausdroff space is hausdroff.
Let{x,} be a family of hausdroff space
Let X={x,} and Y={y,} be distinct points of the product spacer,.,,.

Since x# y there is some index P, such thatxz # yp ,choose disjoint open sets U and V in
containingxgandyp respectively.

Then the setsmt, L(u) and Tg L(v)are disjoint open sets inm,,,containing x and y respectively.

= product of hausdroff space is hausdroff.

b) Lety be a subspace of a regular space x
WKkt, Every regular space is hausdroff space
= X 1s hausdroff.
WKkt, subspace of a hausdroff space is hausdroff.
= Y is hausdroff
Since y is hausdroff
Then one point sets are closed in Y.
Let x be a point of y and let B be a closed subset of y disjoint from x.
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Now,B NnY = B where B denoted the closure of B in X.
«XB (since B is disjoint from x)

Since X is regular,we are can choose disjoint open sets U and V of x containing x and
respectively.

= The subspace of the regular space is regular.

Let {x,} be a family of regular space.

Since {x,}is regular we've {x,} is hausdroff.

=1, is hausdroff (since by (a))

Let x= {m 4 }-

Since x is a hausdroff we’ve

The one point sets are closed in X.

To prove

= X is regular

Let x=(x,)be a points of X.

Let U be a neighbourhood of x in X.

Choose a basic elt 7 about x contained in U.

Choose for each a,a neighbourhoodV, 0fx, inX, such that
Vo € Uq

IfU, = X, then V= my,, isa neighbourhood of x in X

SinceV = my,

Then this givesV c my, c U

Then x is regular.

To prove this show that ifA, < X,V cand ifr,, = A thend = w4,

For suppose that y=(y, )inm,

Let U= U, be is a basic elt containing Y

Sincey, € 4,

we’ve the open setU,must interestA4,so we can choose a pointZ, € A, N U, YV «

then U interests A in the point z= (z,)

thus ye 4

ie)z, © A- (1)

conversely,

suppose that y is inA (Y€ A)

we must such that,for any given index § we'veyg € /Tﬁ

thenmz-1(Up) is a neighbourhood of y.

then its interests A is some points X.

thusUp interests mg(A) = Ag in the points mg (2)
=¥ € /TB
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le)A is a subset ofrz, (A C mz,) — (2)
from eqation(1) and (2)
A =r1A,
Remark:
SQ and S are normal space its product SQ and S is not

Normal Action:

Let x be a space. let G be a topological group an action of G on X is a continuous mapa : G X
X — Xsuch that denoting a(g X x) by g.x one has

)] exX=VxeX
i) 91(g2x) = (g1.92)xVx € Xand g,,9, € G.

Orbit space:

Define xg -x Vx and g, The resulting quotional space is defined by x/g and called the orbit
space of the action x.

Theorem:
Every regular space with a countable map basic is normal.
Proof:

Let X be a regular space with a countable basic B.Let A and B be disjoint closed subset of x.

Since x is regular each point x of A has a neighbourhood U not intersecting B.

Using lemma-1

Choose a neighbourhood v of x such that’ € U choose an elt of B containing x and contained in v.
By choosing such abasic elt for each each xin A.

We contruct a countable covering of A by open sets whose closure doesn’t interest B.

Since thus covering of A is countable we can index it with the positive integers.

(say) letit be {U,}

Similarly choose a countable collection {U,,} of open sets covering B such that each V, is disjoint from
A

The sets U=U,,,and V=Uy,,, are open sets containing A and B respectively.
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But they need not be disjoint.
Now, we prove
U and V are disjoint as in the following manner

Given n, define U, = U,,-

Clearly, each is open because it is a difference of an open set and a closed set
Similarly each open.
This collection {} cover A, because each xeA belongs to for some nand x belongs to name of the sets .
Similarly , the collection  cover B.
Now, the open sets and are disjoint,
For,ifxe u' N v'then x€ u;'n vy for j and k.
Suppose that j <k
It follows from the define of u;that xe U;and
Since j <k
It follows from the define ofv; that x¢ U;.
=« Arisesif je k
Theorem:
Every metrizable space is normal.
Proof:
Let x be a metrizable space with metric d.
Let A and B are disjoint closed subsets of x.
For each aeA choose €a so that the ball B(a, €a) doesn't interest B.
Similarly, for each beB choose €b so thatB(b, €b) doesn't interest A.
Define U=  B(a,ea/2)and v=  B(b, €b/2)

Then U and V are open sets containing A and B respectively.
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Now, we've to prove:
U and V are disjoint.
For ze UNV then zeB(a, €a/2)NB(b, e€b/2) for some acA and beB.
Then, by triangle inequality
d(a, b) < d(a, z) + d(z, b)
<e/2+¢€2
=ea+ eb/2

If ea < eb then d(a, b)<eb then B(b, €b) contains the points a,
If eb < ea then d(a, b) <ea then B(a, €a) contains the points b.
Neither situation is possible
Since a and b are disjoint
Hence U and V are disjoint
= X is normal.
Theorem:

Every compact hausdroff space is normal.
Proof:

Let x be a compact hausdroff space,
WKt, x is regular.
For if x isa point of x and B is closed set in x not containing x then B is compact.
(closed subset of a compact space is compact)
le) B is compact subsets of a hausdroff space x.
Then disjoint open sets containing x and B respectively.
To prove: x is normal.
By lemma (unit-4 , lemma-8)

For given disjoint closed sets A and B in x
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Choose for each point a of A, disjoint open set U, and V,, containing a and B respectively.
The collection {U,} covers A because A is compact.
Also, A may be covered by finitely many U,;.,....... Uam

Then U=ugyU........ Uugm and V=vg N Nv,,, are disjoint open sets containing A and B
respectively.

TUBE LEMMA:

STATEMENT:

Consider the product space x y where Y be a compact
Letx, €y

If N be an open set of XXY containing the slice in XxY, then there exists a tube in XxYcointaining this
slice and contained in N.

SUMMARY
e The tube lemma is useful to prove that the finite product of compact spaces is compact.
QUESTIONS

1. Define Compact Space. Give an example

2. Define limit point compact.

3. State and prove the extreme value theorem.

4. Show that every closed subspace of a compact space is compact.

5. State and prove Uniform continuity theorem.

6. Prove that every compact subspace of a Hausdroff space is closed.

7. State and prove Tube lemma.

8. Let X be a metrizable space prove that following are equivalent (a) X is compact (b) X is limit
point compact (c) X is sequentially compact.
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UNIT V

The
countability
axioms

The Uryshon’s
metrization The The Urysohn’s
theorem. separation lemma

axioms
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Content
o The countability axioms

o The separation axioms
o The Urysohn’s lemma

o The Uryshon’smetrization theorem.

Department of Mathematics, URCW Page 37



COUNTABILITY & SEPARATION AXIOMS

(8) The Countability Axioms:

Definition: Countablebasisatx:

A spaceXis said to have a countable basis atx if there is a countable collection Bof

neighborhoods of x such that each neighborhood of x contains at least one of the elements of B.

Definition: Firstcountable:

A space X that has a countable basis at each of its points is said to satisfy the first countability

axiom, (or) to be first-countable.

Theorem: 1
Let X be a topological space.
a) Let A be a subset of X. If there is a sequence of points of A converging to x, thenx € A; the
converse holds if X is first-countable.
b) Let f: X — Y. If fis continuous, then for every convergent sequence x,, — x in X, the sequence
f (x,,) converges to f(x). The converse holds ifX is firstcountable.
Proof:
The proof is a direct generalization of the proof.

Write Lemma:21.2(The sequencelemma) &Theorem:21.3 with proof.

(Lemma 21.2 (The sequence lemma):

Let X be a topological space; let A c X. If there is a sequence of points of A converging to x, then
x € A; the converse holds if X is metrizable.

Theorem 21.3:

Let f: X — Y. Ifthe function f is continuous, then for every convergent sequence x,, = x in X,

the sequence f(x,,) converges to f(x). The converseholds if X is metrizable.)

Definition: Secondcountable:

If a space X has a countable basis for its topology, then X is said to satisfy the second

countability axiom, (or) to be second-countable.
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Example:
The real line R are has a countable basis.The collection of all open intervals (a,b) with rational

end points.Likewise,R™ has a countable basis.The collection of all products of intervals having rational

end points. EvenR® has a countable basis.The collection of all products]],,cz, Uy, whereU,, is an open

interval with rational end points for finitely many values of n, andU,, = R for all other values of n.
Remark:

The second countability axiom=The first countability axiom
Proof:

For if B is a countable basis for the topology of X, then the subset of B consisting of these basis
element containing the pointx is a countable basis at X.
Theorem:

A subspace of a first countable space is first countable, and a countable product of first countable
spaces is first countable. A subspace of a second countable space is second countable, and a countable

product of second countable spaces is second countable.
Proof:
Write above remark.
Consider the second countability axiom.
If B is a countable basis for X,
then{B n A | B € B} is a countable basis for the subspaceAof X.
IfB;is a countable basis for the spaceX;,
then the collection of all products [] U;, whereU; € B; for finitely many values of iand
U; = X;forall other values ofi, is a countable basis for[] X;.
The proof for the first countability axiom is similar.

Definition: Dense:

A subspace A of a space X is said to be dense in X if A = X.
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Theorem:
Suppose that Xhas a countable basis. Then:

a) Every open covering of Xcontains a countablesubcollectioncoveringX.

b) There exists a countable subset ofXthat is dense in X.

Proof:

Given X has a countable basis.

Let {B,,}be a countable basis forX.

a. Let Abe an open covering of X.

By definition of countable basis,
For each positive integer n € Z, ,we can choose an element of A,,0f A containing the basis elementB,,.
The collection A’ of the sets A,, is countable, because it is index with a subset J of the positive integers.
Also it covers X.
For given a point x € X we can choose an element A of A containing x.
Since A is open, there is a basis element B,
such that x € B,, c A.
Since B, lies in an element of A, the index n belongs to the set J.
So A,, is defined.
Since A4,, c B,, it contains x.

Thus A’ is a countable subcollection of A that covers X.

b. From each non empty basis element B, choose a point x,,.
Let Dbe the setD = {x,| n € Z,}isdense in X.
Because given a point x of X,every basis element containing x intersectsD,

So X belongs to D.

Remark:
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The space having a countable dense subset is often said to be separable.

Definition: Lindelof space:

A space for which every open covering contains a countable subcovering is called aLindelof

space.

The Separation Axioms:

Definition:Reqular:

Suppose that one-point sets are closed in X. Then X is said to be regular if for each pair
consisting of a pointxand a closed set B disjoint from X, there exist disjoint open sets containing x and

B,respectively.

Definition:Normal:

The space X is said to be normal if for each pair A,B of disjoint closed sets ofX, there exist

disjoint open sets containingAand B,respectively.
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On 2§

Hausdorff Regular

Normaj

Figure 31.1

Result:
Every regular space is Hausdroff and every normal space is regular.
Normal = Regular = Hausdroff.

Lemma:
Let Xbe a topological space. Let one-point sets in Xbe closed.

a) Xisregular if and only if given a point x of X and a neighborhood U of x, there is a
neighborhoodVof x such that V c U.
b) Xisnormal if and only if given a closed set A and an open set UcontainingA, there is an open

set V containingAsuch that V c U.
Proof:
a) Let Xbe regular.

Suppose that the point xand the neighborhood U of x are given.
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Let B = X — U ; then B is closed set, since X is regular there exist disjoint open sets U and W

containingxand B, respectively.

The set I/ is disjoint from B,because if y € B,then the set W is a neighborhood of y disjoint from V.

Therefore, V c U.

Conversely,Suppose that the point x and the closed set B not containing x are given.
LetU = X —B.

By hypothesis, there is a neighborhood V of x such that V c U.

Then the open sets V and X — V are disjoint open sets consisting x and B respectively.

Then X is regular.

b) Replace the point x by the set A through out proof of (b) follows.

PROOEF:
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Consider the vertical space slice XoxY

{ Itis a homomorphismto Y

Y is compact }=XoxY is compact

GIVEN,

N is open in XxY

XoxYCN

=XoXy € XoxY V yEY

=XoxY € NVyeY

{ N isopen In XxY

XoxYEN} = then D a basic element UxV

3:XoxYEUXVCN

Where U is openin X

V isopeninY

... The collection {UxY/U open in X
VisopeninY

UXVC(CN } is an open cover for XoxY

But XoxY is compact

.. Such that a finite subcollectionU:xV1,U2xVa........ UnxVn

3:XoxXY C(UixVi)U:-eeevene U(UnxVn)

Let N=U:NU2N----00e Un

Each U; (i=1,2:------ n) isopenin X

= Wisopenin X

Xo€eU; (i=1,2:+--- n)
= Xo€W

TO PROVE:
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WxYCN
Let (x,y)eEWxY
=>XeW, yeY
XeW = XeUiNUzN--v-eee NUn
=> XeU;, Vi=l2------ n
YEY =Xo€YEXoxY ((UixVi)U----U(UnxVn)
=Xo€YE(UixVi)U:----U(UnxVn)
=XoxY € UixV; for some i
=YyeV; for some i
~(xy) €UxVi  [-.UxViCW]
=(X,y) EN
~WxYCN
Theorem:
The product finitely many product space is compact
PROOF:
First we prove that the product by two compact space is compact.
Let X,Y be two compact space
TO PROVE:
XXY is compact
Let {A.}a€j be an open cover for XxY
Let Xo€X
consider the slice XoxY
{XoxY is homomorphism to Y
And Y is compact} =XoxY is compact subset of XxY

Since {Aa} is an open cover for XxY
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= {Aa} is a cover for XoxY by sets open in XxY
[By lemma]
.. D a finite subcollection Aou,Aoz -+ Aan
3: XoxY C AouUA02U....... UAan
Let N=AaiUAw:U....UAan
Each Aa; is open in XxY= N is open in XxY
XoxYCAouUA@U: - UAon=N
=XoxYCN
By tube lemma,
.~.Such that a neighbourhood say Xo in X 3: WxY (N
=>WXY CAaiUA0U: - UAon

CONCLUSION:

Thus for each xeX
We can find an open set Wy in X
3: (i) XeW,
(i1)) WixY can be cover by finite number of members of {Aa}
.. The collection {W,/x€X} is an open cover for X .But X is compact
.". Such that a finite subcollectionWxi...... Wxn
3: WxiUWxeU........UWxm=X
= (WxiUWx2U....UWxm) XY=XXY
= (Wxi XY)U....... U(WxmXY)=XxY
.-. Each W,ixY (i=1,2....W) can be covered by finite number of member of {Aa}
2o (Wi XY)U(Wx2XY)U.....U(Wx XY)=XXY can be covered by finite number of {Aa}
. XXY is compact

{If X 'is compact
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Y is compact} =XXxY is compact

{If XixXoxX...... xXn is compact

Xnis compact} = (XixXeXx...xXs-1)xXn is compact

But XixXzx.....xXn is homomorphic to XixXzx...xXn is compact

.-. By Induction

If X1,Xz....... Xn are compact space then XixXox....... xXn is compact.

FINITE INTERSECTION CONDITION :

A collection € of subset of X is said to satisfy the finite Intersection condition. If for every finite
subcollection{ C1,Co...... Cn} of €

The Intersection C:iNNCzN.....NCn=¢

Let X be a topological space then X is compact = for every collection g are closed set in X satisfy
the finite Intersection condition Nceg C =¢

PROOEF:
Let X be compact

Let ¢ be collection of closed set in X satisfying the finite Intersection condition.

TO PROVE:

Suppose,

= (N¢eg O)° #°

=Ucec cC=X

= each

The collection { X-C/Ce(} is an open cover for X But X is compact.

~3an finite subcollection X-Ci,X-Co...... X-Cn
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Ui (x —¢ )= X
= (U1 ( X-C))e =X
ﬁﬂ;’;l ci=9

Which is a contradiction ( Since { satisfy the Finite Intersection collection)

.-.ﬂcqt(b

cel
Conversly,
Assume that  be a collection of closed set in X satisfying the Finite Intersection collection
Neer C #0
TO PROVE:
X is compact
Let A be an open cover of X
TO PROVE:
A has the finite subcover
Suppose,
A has no finite subcover
(i.e) AiUA2U......... UAN=X
For any finite subcollection from A
(A1UAzU......... UAN)e£Xe
=A°NA%°N ... NAn® + @
=N A # 0
=Nz (X —A) # 0
~The collection of {X -A/ACA} of closed set satisfying the finite Intersection collection

By hypothesis,
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h(X—A) %0
i=1

(NaeaX — A+ 0

U A+#X { Ais an open cover for x}
AEA

Se

Suppose 3 a finite subcollection from ¢ covering X

Hence X is compact.

SUMMARY

Countable sets form the foundation of a branch of mathematics called discrete Mathematics

The separation axioms are axioms only in the sense that, when defining the notion of topological
paces one could add these conditions as extra axioms to get a more restricted notion of what a
topological space is.

Topology is also used in string theory in physics, and for describing the space-time structure of

universe.

QUESTIONS

Nk wNE

9.

Define limit point compact.

Define Metrizable Space.

Define Quotient topology.

Define linear continum.

Define Path connected

Show that every closed subspace of a compact space is compact.

Let A be a connected subspace of X .If AC BCA, then B is also connected.

A space X is locally connected iff for every open set U of X, each component of U is open

in X.

The components of X are connected disjoint subset of X, whose union is X such that each
connected subsets of X intersecting only one of them.

10. State and Prove Intermediate value theorem.
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11. The topologies on R"induced by the Euclidean metric d and the square metric R are the same as
the product topology on R™ That is R"is Metrizable.

12. State and prove sequence lemma.
13. State and prove the extreme value theorem.

14. State and prove Urysohn lemma.

15. Let X be a metrizable space prove that following are equivalent (a) X is compact(b) X is limit
point compact (c) X is sequentially compact.

16. The finite cartesian product of a connected space is connected.

17.If L is a linear continum in the order topology then L is connected and so are intervals and rays in

L.
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