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SYLLABUS 

COURSE CODE: 7MMA3C2 

TOPOLOGY – I 

 

Unit I 

Topological Spaces – Basis of a topology – the order topology – the product topology on XxY– 

the subspace topology – closed sets and limit points. 

 

Unit II 

Continuous functions – the product topology – the metric topology – the quotient topology. 

 

Unit III 

Connected spaces – connected sets in the real line – components and path components – local 

connectedness. 

 

Unit IV 

Compact spaces – compact sets in the real line – limit point compactness. 

 

Unit V 

The countability axioms – the separation axioms – the Urysohn’s lemma – the 

Uryshon’smetrization theorem. 

 

Text Book 

James R.Munkres, Topology a first course, Prentice Hall of India Pvt. Ltd.,New Delhi (1987)  

 

Chapter II : (Sections 2.1 to 2.10) 

Chapter III : (Sections 3.1 to 3.4) 

Chapter IV : (Sections 3.5 to 3.7) 

Chapter V : (Sections 4.1 to 4.4) 

 

Books for Supplementary Reading and Reference: 

1. James Dugundji, Topology, Prentice Hall of India, New Delhi, 1975. 

2. George F.Simmons, Introduction to Topology and Modern Analysis, McGraw Hill Book Co., 

1963. 
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III Topology – I 

 

7MMA3C2 CO1 

 

 

 

They get the knowledge Topological 

Spaces, Basis of a topology , the order 

topology , the product topology on 

XxY, the subspace topology, closed 

sets and limit points. 

 

 

CO2 To know about the concept of 

Continuous functions, the product 

topology , the metric topology , the 

quotient topology. 

 

CO3 They can understandConnected 

spaces , connected sets in the real line , 

components and path components , 

local connectedness. 

 

CO4 

 

They get the knowledge 

Compact spaces , compact sets in the 

real line – limit point compactness. 

 

. 

CO5 

 

 

 

Understand the The countability 

axioms , the separation axioms 

 

CO6 

 

 

 

To know the Urysohn’s lemma 

, the Uryshon’s metrization theorem.  

 

 



Department of Mathematics, URCW Page 4 
 

 

 

                                                                 Unit I 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

TOPOLOGICAL SPACE

Basis of a topology 

The order topology 

The product topology The subspace topology 

Closed sets and Limit 
points



Department of Mathematics, URCW Page 5 
 

 

 

 

Content 

 

 Topological Spaces  

 Finite Complement Topology  

 Union and Intersection of topologies 

 Basis of a topology   

 The order topology  

 The product topology on XxY 

 The subspace topology  

 Closed sets and limit points. 
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TOPOLOGICAL SPACE 

TOPOLOGY: 

Let  X be a non-empty set. Let τbe a collection of subset of X. 

τis said to be topology on X.Ifτsatisfies the followingcondition. 

1. ∅,X ∈τ 

2. A1,A2………An∈τ⟹⋂ 𝐴𝑖
𝑛 
𝑖=1 ∈ τ 

3. ∀ɑ∈τ,Aɑ∈τ⟹⋃ 𝐴𝛼𝛼∈𝐽 ∈ τ 

The pair (X,τ ) is called a topological space . 

Note:1 

The members of τ are called the open sets in X (or) τ open set in X. 

Note:2 

IF ( X , τ) is topological space then the element of X are called points. 

Example:1 

Let X be any set and τbe the collection of all subsets of X.Thenτ  is the topology on X . This topology  τis  

called discrete topology. 

Example:2 

Trivial topology (or) in discrete topology .The collection consisting of X and ∅only is also a topology on 

X. 

Then it is said to be trivial topology (or) indiscrete topology. 

Example:3 

Let X = { a , b , c } 

C is the collection of subset of X then 

C = { {a} . {b} . {c} . {a,b} . {b,c} ,{c,a}, X ,∅} 

τ = { {a},{a,b}, X ,∅} 

Therefore , τ satisfies the topology. 

FINITE COMPLEMENT TOPOLOGY : 

X be a set.LetτF be the collection of subsets of U(X) such that X – U either is finite (or) is all of X then τF 

is a topology on X called the finite complement topology. 

RESULT:1 
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The intersection of two topology is again a topology. 

Let τ1 and τ2 be the two topology on X 

To prove: 

τ1 and τ2 is a topology on X 

1. ∅∈τ1   ,   ∅∈τ2 

⟹∅∈τ1⋂τ2 

X∈τ1   ,   X ∈τ2 

⟹ X ∈τ1⋂τ2 

⟹∅ , X ∈τ1⋂τ2 

2. Let A1, A2……….. An∈τ1⋂τ2 

⟹ A1, A2………..An∈τ1  and⋂ 𝐴𝑖
𝑛 
𝑖=1 ∈τ1 

Similarly ,⋂ 𝐴𝑖
𝑛 
𝑖=1 ∈τ2 

⟹⋂ 𝐴𝑖
𝑛 
𝑖=1 ∈τ1⋂τ2 

3. Aɑ∈τ1⋂τ2 

⟹Aɑ∈τ1&ɑ∈τ 

⟹⋃ 𝐴𝛼𝛼∈𝐽 ∈τ1 

⟹Aɑ∈τ&ɑ∈τ 

⟹⋃ 𝐴𝛼𝛼∈𝐽 ∈τ2 

⟹⋃ 𝐴𝛼𝛼∈𝐽 ∈τ1⋂τ2 

∴τ1⋂τ2   is a topology on X. 

RESULT : 2 

The union of the topology need not be the topology 

Let  X = {a,b,c} 

τ1 = {∅ , X , {a}} 

τ2 = {∅ , X , {b}} 

Then τ1 and τ2 are topology on x. 

Now, 
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τ1⋃τ2 = {∅ , X , {b}} 

{a} ∈τ1⋃τ2 

{b} ∈τ1⋃τ2 

{a}⋃{b}= {a,b}∉τ1⋃τ2 

∴τ1⋃τ2 is not a topology on X 

∴The union of the topology need not be the topology. 

DEFINITION: 

Let X have two topology 𝝉&𝝉’ .We say that 𝝉 is finer than 𝝉’(𝝉⊃𝝉’) 

Basis for a topology 

Let X be a non empty set .Let B be a collection of subset of X 

B is called a basis if its satisfies the following condition 

I. ∀x∈X , ∃B∈𝔹∋ : x∈B 

II. ∀ x∈ B1⋂B2  Where  B1,B2∈𝔹 

∃ B3∈𝔹∋ :  x ∈B3⊂  B1⋂B2 

Note: 

The element in a basis are called basis element .The element in a topology are called open sets.  

Let X be a non empty set . Let 𝔹 be a basis of X. 

Thus topology 𝝉 generated by the basis 𝔹 is define as follows, 

U is open in X⇔∀x∈U [(i.e)U∈τ]there exists  B∈𝔹∋: x∈B⊂ U 

NOTE : 

Every basis element is an open set 

LEMMA : 

         Let X be a non empty set .let ˄ topology𝝉 on X .Then 𝝉’is equal to collection of  all union of 

elements of 𝔹. 

Given  is a basis for the topology 𝝉 on X 

Let𝝉’ be the collection of all union of elements of 𝔹 

To prove : 

𝝉 is equal to 𝝉’ 



Department of Mathematics, URCW Page 9 
 

(i.e) to prove 

I. 𝝉⊂𝝉’ 

II. 𝝉’⊂𝝉 

𝝉⊂𝝉’ 

Let U ∈𝝉⟹U is open in X (by definition) 

⟹∀x∈U∃Bx∈𝔹 

⟹x∈Bx⊂ U (by definition) 

⟹ U = ⋃x∈UBx 

⟹ U is the union of basis of elements 

⟹U ∈𝝉’ 

∴𝝉⊂𝝉’……….(1) 

𝝉’⊂𝝉 

Let v∈𝝉’⟹  v=⋃ɑ∈𝝉Bɑ where  Bɑ∈𝔹 

⟹Bɑis a basis element 

⟹Bɑ is open in X [member of 𝝉 is open in X] 

⟹Bɑ∈𝝉 

But𝝉 is a topology 

⟹⋃ɑ∈𝝉Bɑ∈𝝉 

⟹ v∈𝝉 

∴𝝉’⊂𝝉 ……….(2) 

∴From (1) & (2) 

𝝉 = 𝝉’ 

LEMMA : 

Let 𝔹 and 𝔹’ be a basis for the topology 𝝉 and 𝝉’ respectively on X. Then the following are 

equivalent. 

i. 𝝉’ is finer than 𝝉 

ii. For each x∈ X  and each basis element B∈𝔹⊂x there is a basis element B'⊂𝔹’∋:x∈B'⊂𝔹 
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(i)⟹(ii) 

Assume that 

𝝉’ is finer than 𝝉 

(i.e)𝝉’⊃𝝉   or   𝝉⊂𝝉’ 

Let x∈ X and B ∈𝔹 be a basis element and x∈B 

B∈𝔹⟹ B is open in X 

⟹ B∈𝝉 

⟹ B∈𝝉’ [since 𝝉⊂𝝉’] 

⟹ B∈𝔹’  ∀x∈B 

⟹ There exists B'∈𝔹’ such that x ∈B'⟹x∈B'⊂B 

Hence (i)⟹(ii) 

(ii)⟹(i) 

x∈X and B∈𝔹⊂ X 

(ie) 𝝉⊂𝝉’ 

Let U∈𝝉 

⟹ U is open in X 

⟹∀x∈U 

⟹ B∈𝔹 

Such that x∈B⊂U 

X∈U ⟹ x ∈ X.  [∴U(x)] 

By hypothesis, 

There existsB'∈𝔹’ 

Such that x∈B'⊂ B 

(ie) x∈B'⊂ B⊂U 

⟹U is open  
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⟹ U∈𝝉’ 

∴𝝉⊂𝝉’ 

Hence 𝝉’ is finer than 𝝉. 

SUMMARY 

 Topology is a relatively new branch of mathematics; most of the research in topology has been 

done since 1900.  

 Topology studies properties of spaces that are invariant under any continuous deformation. 

 Topological concepts and methods underlie much of modern mathematics.  

 Topological approach has clarified very basic structural concepts in many of its branches. 

 

QUESTIONS 

1. Define Topological Space. 

2. Explain the example of a topological space. 

3. Define Metrizable Space. 

4. Define Quotient topology. 

5. Define linear continuum. 

6. Define Path connected. 

7. Prove that the rational number Q are not connect5.  Let 𝔹 and 𝔹’ be a basis for the topology 𝝉 and 

𝝉’ respectively on X. Then the following are equivalent. 

              (a)𝝉’ is finer than 𝝉 (b)For each x∈ X  and each basis element B∈𝔹⊂x there is a basis element    

          B'⊂𝔹’∋:x∈B'⊂𝔹. 

8. Prove that  X be a non empty set .let ˄ topology𝝉 on X .Then 𝝉’is equal to collection of  all union 

of    elements of 𝔹. 

9. The topologies on Rn induced by the Euclidean metric d and the square metric R are the same as 

the product topology on Rn.That is Rn is Metrizable. 

10. State and prove sequence lemma. 
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Unit II 

 

 

 

 

 

 

 

 

 

 

The quotiont topology

Defintions and examples Theorems

The metric topology 

Defintions and examples Theorems

Continuous functions 

Defintions and examples Theorems
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Content: 

o Continuous functions  

o  The product topology 

o  The metric topology  

o  The quotient topology. 

 

 

 

CONTINUOUS FUNCTION: 

    Let X and Y are topological spaces. A function f : X→Y is said to be Continuous if for each open 

subset V(Y),the set 𝑓−1(v) is an open subset of  X. 

THEOREM: 

  Let X and Y be topological space.  Let f : X →Y then the following are equivalent  

(i) f is continuous. 

(ii) For every closed set B of X the set 𝑓−1 (B) is closed in X. 

(iii) For every subset A of X, one has f(𝐴̅) ⊂ 𝐹(𝐴)̅̅ ̅̅ ̅̅ ̅. 

(iv) For each 𝑥 ∈ 𝑋 and each neighbourhood ∪ of X such that f(u)=v. 

                                   (i)⟹(ii) 

        Assume that, 

f is continuous. 

       To prove: 

𝑓(𝐴)̅̅ ̅̅ ̅ ⊂  𝑓(𝐴)̅̅ ̅̅ ̅∀ A is a subset of X. 

Let A ⊂ X 

                        Let 𝑦 ∈  𝑓(𝐴)̅̅ ̅̅ ̅ 

⟹ 𝑦 = 𝑓(𝑥) , 𝑥 ∈ 𝐴̅ 
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⟹ ∀open set containing x intersect A. 

    To prove: 

𝑦 ∈  𝑓(𝐴)̅̅ ̅̅ ̅ 

                     Let v be a neighbourhood of y that intersect f(A). 

i.e) 𝑦 ∈ 𝑣 

⟹ 𝑦 ∈ 𝑣 

⟹ 𝑓(𝑥) ∈ 𝑣 

⟹ 𝑥 ∈ 𝑓−1(𝑣) 

𝑓: 𝑋 → 𝑌  𝑖𝑠 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠
𝑉 𝑖𝑠 𝑜𝑝𝑒𝑛 𝑖𝑛 𝑌

} ⟹ 𝑓−1(𝑣)is open in x. 

⟹ 𝑓−1(𝑣)is open in x. 

   But, 𝑥 ∈ 𝐴̅ ⟹ 𝑓−1(𝑣) ∩ 𝐴 ≠ 𝜑 

   Let 𝑎 ∈ 𝑓−1(𝑣) ∩ 𝐴 

⟹ 𝑎 ∈ 𝑓−1(𝑣)& 𝑎 ∈ 𝐴 

⇒ 𝑓(𝑎) ∈ 𝑣 ∩ 𝑓(𝑎) ∈ 𝑓(𝐴) 

⇒ 𝑓(𝑎) ∈ 𝑣 ∩ 𝑓(𝐴) 

⇒ 𝑣 ∩ 𝑓(𝑎) ≠ ∅ 

⇒The open set v in y containing intersect 𝑓(𝐴). 

Therefore 𝑦 ∈  𝑓(𝐴)̅̅ ̅̅ ̅ 

 Therefore 𝑓(𝐴)̅̅ ̅̅ ̅ ⊂  𝑓(𝐴)̅̅ ̅̅ ̅ 

(ii)⟹(iii) 

Assume that,𝑓(𝐴)̅̅ ̅̅ ̅ ⊂  𝑓(𝐴)̅̅ ̅̅ ̅ ∀ A is a subset of X. 

Let B be closed in y. 

To prove: 

𝑓−1(𝐵)is closed in X. 
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Let A=𝑓−1(𝐵) → (𝐴) 

𝑓(𝐴) = 𝐵 → (𝐵) 

To  Prove: 

                   A is closed in X. 

                  (ie) to prove A=(𝐴)̅̅ ̅̅ ̅ 

We know that, 

            A is a subset of  (𝐴)̅̅ ̅̅ ̅ → (1) 

Claim, 

(𝐴)̅̅ ̅̅ ̅is a subset of A 

[ since𝑓(𝐴)̅̅ ̅̅ ̅ ⊂ 𝑓(𝐴)̅̅ ̅̅ ̅] 

Let 𝑥 ∈  (𝐴)̅̅ ̅̅ ̅ ⟹ 𝑓(𝑥) ∈ 𝑓(𝐴)̅̅ ̅̅ ̅ 

⟹ 𝑓(𝑥) ∈ 𝑓(𝐴)̅̅ ̅̅ ̅̅  

⟹ 𝑓(𝑥) ∈ �̅� 

⟹ 𝑓(𝑥) ∈ 𝐵 

⟹ 𝑥 ∈ 𝑓−1(𝐵) 

⟹ 𝑥 ∈ 𝐴 

Therefore 𝐴̅ ⊂ 𝐴 → (2) 

From (1) & (2) 

𝐴 = 𝐴̅ 

Therefore A is closed in X. 

(ie)𝑓−1(𝐵) is closed in X. 

(iii)⟹(i) 

Assume that, B is closed in y. 

⟹ 𝑓−1(𝐵)is closed in X. 
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To Prove: 

f is continuous 

v be open in y. 

⟹ 𝑦 − 𝑣is closed in y. 

⟹ 𝑓−1(𝑦 − 𝑣)is closed in x. 

⟹ 𝑓−1(𝑦) − 𝑓−1(𝑣)is closed in x. 

⟹ 𝑓−1(𝑣)isopen in x. 

⟹ 𝑓is continuous  

(i)⟹(iv) 

Assume that, 

𝑓is continuous 

To prove: 

      For each 𝑥 ∈ 𝑋 and each neighbourhood v of f(x) there isneighbourhood u of x such that 𝑓(𝑢) ⊂ 𝑣. 

Let 𝑥 ∈ 𝑋 

Let v be a neighbourhoodof𝑓(𝑥). 

To Prove: 

𝑓(𝑢) ⊂ 𝑣 

[therefore𝑓 is continuous] 

U=𝑓−1(𝑣) is a neighbourhood of X. 

𝑓(𝑢)is a subset of v 

(ie) 𝑓(𝑢) ⊂ 𝑣 

(iv)⟹(i) 

Assume that, 

For each 𝑥 ∈ 𝑋 and each neighbourhood v of  𝑓(𝑥), there is neighbourhood v of x, such that 𝑓(𝑢) ⊂ 𝑣. 

To Prove: 
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𝑓is continuous. 

Let v be an open set of v. 

Let x be a point of  𝑓−1(𝑣). 

⟹ 𝑥 ∈ 𝑓−1(𝑣) 

⟹ 𝑓(𝑥) ∈ 𝑣 

So that by hypothesis, 

There is an neighbourhood𝑢𝑥 of 𝑥 such that 𝑓(𝑢𝑥)) ⊂ 𝑣. 

Then 𝑢𝑥 ⊂ 𝑓−1(𝑣) 

⟹ 𝑓−1(𝑣)is union of open set 𝑢𝑥 so that  

It is open 

Hence 𝑓 is continuous. 

Homeomorphism: 

             Let X and Y be topological space . 

Let 𝑓: 𝑋 ⟶ 𝑌 be a bijection. If both the function 𝑓 and the inverse function. 

𝑓−1: 𝑌 ⟶ 𝑋are continuous then 𝑓 is called a Homeomorphism. 

Definition: 

           Given X  such that 

                                      X=    𝛱Xi  

or the (possibly infinite) Cartesian product of the topological spaces      

  Xi, indexed by i, the box topology on X  is generated by the base 

B={𝛱 Ui / Ui  is open} 

The name box comes from the case of Rn, in which the basis sets look like boxes. The 

set  endowed with the box topology is sometimes denoted by  

Box topology on Rω:  

 The box topology is completely regular 

https://en.wikipedia.org/wiki/Index_set
https://en.wikipedia.org/wiki/Basis_(topology)
https://en.wikipedia.org/wiki/Completely_regular
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 The box topology is neither compact nor connected 

 The box topology is not first countable (hence not metrizable) 

 The box topology is not separable 

 The box topology is paracompact (and hence normal and completely regular) if 

the continuum hypothesis is true 

 

 

SUMMARY 

 Topology is sometimes called "rubber-sheet geometry" because the objects can be stretched and 

contracted like rubber, but cannot be broken. 

 In mathematics, the study of the properties of a geometric object that remains unchanged by 

deformations such as bending, stretching, or squeezing but not breaking. 

 

 

QUESTIONS 

1. Define Hausdroff Space 

2. Define the K topology on the real line. 

3. Show that the intersection of two topology is again a topology and the union need not    

   be a topology 

 

 4. Let B and B’ be a basis for the topology  𝜏 𝑎𝑛𝑑 𝜏′ respectively on X then the following are   

equivalent  (a) 𝜏′ is finer than 𝜏  (b) for each x in X and each basis element B ∈ Ḃ X there   

is a basis element B’ Ƀ such that x ∈ B’  Ƀ. 

5. Define the subspace topology. For a subset Y of a topological space X, 

Define 𝜏𝑦 = {𝑌 ∩ 𝑈/𝑈 ∈ 𝜏}. Prove that 𝜏𝑦 is a topology. 

 

  6.  Show that every finite point set in a Hausdroff space X is closed. 

 

  7.  Let X be a topological space. Prove that the following conditions holds 

( i) ∅ and X are closed. 

https://en.wikipedia.org/wiki/Compact_space
https://en.wikipedia.org/wiki/Connected_space
https://en.wikipedia.org/wiki/First_countable
https://en.wikipedia.org/wiki/Metrizable
https://en.wikipedia.org/wiki/Separable_space
https://en.wikipedia.org/wiki/Paracompact
https://en.wikipedia.org/wiki/Continuum_hypothesis
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     (ii) Arbitrary intersection of closed sets are closed. 

     (iii)Finite intersection of closed sets are closed. 

 

8. Every  simply ordered ser is a Hausdroff space in the order topology.(i) A subspace of    

Hausdroff space is Hausdroff space. (ii) The product of two Haudroff space is a Hausdroff 

space. 
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Unit III 
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Connected 
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Content 

 Connected spaces  

 Connected sets in the real line  

 Pasting Lemma  

 Components and path components   

 Local connectedness 
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DEFINITION:  

 

 A topological space (X, T ) is said to be disconnected if there exist disjoint nonempty subsets A, B ⊆ X 

such that X = A t B, and A ∩ B = A ∩ B = ∅.  

If (X, T ) is not disconnected, it is said to be connected. Just like with compactness we will often refer to 

subsets of topological spaces being connected, and in doing so we mean that the subset with its subspace 

topology is connected. Before going on, we state some of the many equivalent forms of this definition. 

The proof that these are all equivalent is basically immediate.  

THOREM:  The following are equivalent for a topological space (X, T ).  

1. (X, T ) is disconnected.  

2. There exist nonempty, disjoint, open sets A, B ⊆ X such that X = A t B.  

3. There exist nonempty, disjoint, closed sets A, B ⊆ X such that X = A t B.  

4. There is a nontrivial closed subset of X. That is, there is a subset A ⊆ X that is both open and closed, 

and A is not X or ∅. 

 

THEOREM : 

THE PASTING LEMMA. 

Let  X  and  Y  be  topological  space. Let  X = A ⋃ B  where  

A  and  B  are  closed  in  X. Let  f :A ➝ X  and  g : B ➝ Y  be  

continuous. If  f (X)  =  g(X)  for  every  X ∈ A ∩ B  then  f  and  g  

combined  to  give  a  continuous  function  h : X ➝ Y  defined   

by  setting  h (X)  =  f ( X)  if  X ∈ A   and  h (X)  =  g(X)  if  X ∈ B. 

PROOF: 

Given  X = A⋃ B  and  A, B  are  closed  in  X.  

f : A ➝ X  and  g : B ➝ Y  are  continuous.  

           Let  h : X ➝ Y  by  h ( x) = f ( x) for  all  x ∈ A  and  h (x) =  

g ( x) for  all  x ∈ B.  
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f (x) =  g ( x) .       for  all  x ∈ A ∩ B.  

To  prove  : h : X ➝ Y.  

Let  C  be  a  closed  set  in  Y.  

          To  prove : h^ -1 ( c ) = f^-1 ( c) ⋃ g^-1 ( c ) .  

Let  x∈ h^-1 ( c).  

⇔h (x) ∈ C.  

⇔f ( x) ∈ C,  for  all x ∈ A.  

⇔x∈ f^-1 ( c).  

                       (Or)  

⇔x∈ g^-1 ( C).  

⇔x∈ f^-1 (C) ⋃ g^-1 (C).  

∴h^-1 ( C) = f^-1 ( C) ⋃ g^-1 ( C ).  

∴C  is  closed  set  in  Y  and  f :A ➝ x is  continuous.  

⇒f^-1 ( C)  is  closed  in  A.  

f ^-1 ( C)  is  closed  in  A  and  A  is  closed  in  X.  

⇒f^-1 ( C) is  closed  in  X.  

Similarly  g^-1 ( C)  is  closed  in  X.  

∴f^-1 ( C) ⋃ g^-1 ( C)  is  closed  in  X.  

             (ie)  h^-1 ( C)  is  closed  in  X.  

∴h  is  continuous.  

DEFINITION:  

Let  J  be  an  index  set. Given  a  set  X. We  define  a   

J- tuple of elements  of  X  to  be  a  function  X :  J ➝ X. If  ∝  is  an   

Element  of  J, we  often  denote  the  value  of  X  at  ∝  by  X ∝, 

 rather  than  X ( ∝)  is called  if  the  ∝th coordinate  of  X. 
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And  we  often  denote  the  function  X  itself  by  the  

 symbol  ( X ∝)  ∝∈  J  which  is  as  close  as  we can  come  to  a   

“ tuple  notation “ for  an  arbitrary  index  set  J. We  denote  the  

 set  of  all  J- Tuples  of  elements  of  X  by  X ^ J.  

THEOREM : 

MAPS INTO PRODUCTS. 

Let  X  and  Y  be topological  space. Let  f: A ➝ X × Y  be   

Given  by  the  equation  f (a)  = ( f1 (a), f2 ( a) )  then  f  is  continuous  iff  the  functions  f1 :A ➝ X ; f2 

: A ➝ Y  are  continuous.  

PROOF: 

Given :  f : A ➝ X x Y.  

f (a) =  ( f1 (a), f2 (a) ).  

Assume  that  f  is  continuous.  

To  prove : f1 : A ➝ X, f2 : A ➝ Y  are  continuous.  

Consider  ℼ1 : X x Y ➝ X  by  ℼ1( x, y)  = x.  

To  prove :  ℼ 1  is  continuous.  

Let  U  be  open  in  X.  

To  prove  : ℼ1 ^ -1 (U)  is  open  in  X x Y.  

ℼ1 (U x Y)  = U.  

⇒ ℼ1 ^ -1 ( U) = U x Y.  

            U  is  open  in  X  and  Y  is  open  in  Y. 

⇒ U x Y  is  open  in  X x Y.  

ℼ1 ^ -1 ( U)  is  open  in  X x Y.  

ℼ1  is  continuous.  

                ℼ1 : X x Y ➝ X  are  continuous.  
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∴ ℼ1 of : A ➝ X  is  continuous.  

Now  ( ℼ1 of )  ( a)  = ℼ1 ( f ( a) ).  

                         = ℼ 1 ( f1 ( a) , f2 ( a) ).  

( ℼ1  of)  ( a)  = f1 (a),   for  all  a ∈ A.  

                   ℼ1  of =  f 1. 

∴ ℼ1  of : A ➝ X  is  continuous.  

⇒f1 : A ➝ X  is  continuous.  

Similarly  ⇒ f2 : A ➝ Y  is  continuous.  

          Conversely,   

Assume  that  f1 : A ➝ X  and  f2 : A ➝ Y  are  continuous.  

To  prove : f : A ➝ X x Y  is  continuous.  

Let  U x V  be  open  in  X x Y.  

⇒ U  is  open  in  X  and  V  is  open  in  X.  

To  prove : f^ -1 ( U x V)  is  open  in  A.  

First  we  prove  that : f^-1 ( U x V) = f1 ^ -1 ( U) f2 ^ -1 ( V).  

Let  a∈ f^-1 ( U x V) ⇔ f ( a) ∈ U x V.  

⇔( f1 ( a), f2 ( a) )  ∈ U x V.  

⇔ f1 ( a) ∈ U, f2 ( a) ∈ V.  

⇔a∈ f1 ^-1 ( U) , a ∈ f2 ^ -1  ( V).  

 

f ^- 1 ( U x V) = f1 ^ -1 ( U) ∩ f2 ^ -1 ( V).  

U  is  open  in  X  and  f1 : A ➝ X  is  continuous.  

⇒ f1 ^ -1 ( U)  is  open  in  A.  

V  is  open  in  Y  and  f2 : A ➝ Y  is  continuous.  
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⇒ f2 ^ -1 ( V)  is  open  in  A.  

∴ f1 ^-1 ( U)  ∩ f2 ^ -1 ( V)  is  open  in  A.  

( ie) . f 1 ^ -1 ( U x V)  is  open  in  A.  

∴  f  is  continuous.  

DEFINITION: 

Let  { A ∝ } ∝∈ J  be  an  indexed  family  of  sets. Let  X = ⋃ 

A ∝.The  Cartesian  product  of  this  indexed  family ,  denoted  by   

ℼ A ∝  is  defined  to  be  the  set  of  all  J – tuples   ( X ∝)  ∝∈ J  of  

elements  of  X  such  that  X ∝∈ A ∝  for  each  ∝∈ J.  

             (ie).  It  is  the  set  of  all functions  X : J ➝⋃ A ∝  such  that   

X ( a)  ∈ X ∝  for  each  ∝∈ J.  

DEFINITION : 

                      Let  { X ∝ }  ∝∈ J  be  an  indexed  family  of  topological  

spaces. Let  us  take  as  a  basis  for  a  topology  on  the  product   

Space. ℼ X ∝  the  collection  of  all  sets  of  the  form  ℼ U ∝  where 

U ∝  is  open  in  X ∝  for  each  ∝∈ J. The  topology  generated  by  

this  basis  is  called  the  box  topology.  

SUMMARY 

 

 A sphere is topologically equivalent to a cube because, without breaking them, each can be 

deformed into the other as if they were made of modeling clay. 

 It is used in many branches of mathematics, such as differentiable equations, dynamical systems, 

knot theory, and Riemann surfaces in complex analysis.  

 

QUESTIONS 

1. Define Box Topology 
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2. Define Product Topology 

 

3. State and Prove Pasting Lemma   

 

4. Prove that Composition of two continuous topological spaces is continuous. 

 

5. State and Prove Sequence Lemma     

 

6. Let X be a metric space. Prove that �̿�  is a metric that induced the same topology as d, where �̿� 

(x,y)= min {d(x,y), 1} 

 

7. State and Prove Uniform limit theorem 

 

8. Prove that the topological on Rn induced by the Euclidean metric d and the square metric  are  

the same as the product topology on Rn  
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Unit IV 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Compact spaces 

compact sets in the real line 

limit point compactness.
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Content 

 Compact spaces  

 Compact sets in the real line  

 Limit point compactness 
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Definition: 

A topological space X is compact if every open cover has a finite sub cover. More precisely, if     X=⋃i 

∈IUi for some collection {Ui : i∈I} of open sets indexed by a set I then there is a finite subset J⊂I such 

that X=⋃i∈JUi. 

 

Theorem: 

A) A subspace of a hausdroff space is hausdroff,a product of hausdroff space is hausdroff.  

B) A subspace of a regular space is regular, a product of regular space is regular. 

Proof: 

a) Let x be a hausdroff space and let x and y be two points of the subspace y of x. 

If U and V are disjoint neighbourhood in X of x and y respectively. 

Then,UꓵY and VꓵY are disjoint neighbourhood of x and y in Y. 

Hence a subspace of hausdroff space is hausdroff. 

Let{𝑥𝛼} be a family of hausdroff space  

Let X={𝑥𝛼}  and Y={𝑦𝛼} be distinct points of the  product  space𝜋𝑥𝛼. 

Since x≠ 𝑦 there is some index β, such that𝑥𝛽 ≠ 𝑦𝛽  ,choose disjoint open sets U and V in 

containing𝑥𝛽and𝑦𝛽  respectively. 

Then the sets𝜋𝛽
−1(u) and 𝜋𝛽

−1(𝑣)are disjoint open sets in𝜋𝑥𝛼containing x and y respectively. 

 .product of hausdroff space is hausdroff ؞

b)  Let y be a subspace of a regular space x 

Wkt, Every regular space is hausdroff space 

 .x is hausdroff ؞

Wkt, subspace of a hausdroff space is hausdroff. 

⇒      Y is hausdroff 

Since y is hausdroff 

Then one point sets are closed in Y. 

Let x be a point of y and let B be a closed subset of y disjoint from x. 



Department of Mathematics, URCW Page 31 
 

Now,�̅� ∩ 𝑌 = 𝐵  where 𝐵 ̅denoted the closure of B in X. 

 x�̅�                   (since B  is disjoint from x) ؞

Since X is regular,we are can choose disjoint open sets U and V of x containing x and   

respectively. 

 .The subspace of the regular space is regular ؞

Let {𝑥𝛼} be a family of regular space. 

Since {𝑥𝛼}is regular we′ve {𝑥𝛼} is hausdroff. 

⇒𝜋𝑥 is hausdroff   (since by (a)) 

Let x= {𝜋𝑥𝛼}. 

Since x is a hausdroff we᾽ve 

The one point sets are closed in X. 

 

To prove 

⇒        X is regular 

Let x=(𝑥𝛼)be a points of X. 

Let U be a neighbourhood of x in X. 

Choose a basic elt 𝜋𝑈𝛼about x contained in U. 

Choose for each α,a neighbourhood𝑉𝛼of𝑥𝛼 in𝑋𝛼  such that  

𝑉�̅� ⊂ 𝑈𝛼 

If𝑈𝛼 = 𝑋𝛼 then V= 𝜋𝑉𝛼 is a neighbourhood of x in X 

Since�̅� = 𝜋�̅�𝛼 

Then this gives𝑉 ̅ ⊂  𝜋𝑈𝛼 ⊂ 𝑈 

Then x is regular. 

To prove this show that if𝐴𝛼 ⊂ 𝑋𝛼∀ αand if𝜋𝐴𝛼 = 𝐴                     then𝐴̅ = 𝜋�̅�𝛼 

For suppose that y=(𝑦𝛼)in𝜋�̅�𝛼 

Let U= 𝑈𝛼 be is a basic elt containing Y 

Since𝑦𝛼 ∈ 𝐴̅
𝛼 

we᾽ve the open set𝑈𝛼must interest𝐴𝛼so we can choose a point𝑍𝛼 ∈ 𝐴𝛼 ∩ 𝑈𝛼 ,∀ 𝛼 

then U interests A in the point z= (𝑧𝛼) 

thus   y∈ 𝐴̅ 

ie)𝜋�̅�𝛼 ⊂ 𝐴̅ → (1) 

conversely, 

suppose that y is in𝐴̅   (y∈ 𝐴̅) 

we must such that,for any given index β we᾽ve𝑦𝛽 ∈ 𝐴�̅� 

then𝜋𝛽-1(𝑈𝛽) is a neighbourhood of y. 

then its interests A is some  points x. 

thus𝑈𝛽  interests 𝜋𝛽(𝐴) = 𝐴𝛽  in the points 𝜋𝛽(𝑧) 

⟹ 𝑦𝛽 ∈ 𝐴�̅� 
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Ie)𝐴̅   is a subset of𝜋�̅�𝛼(𝐴̅ ⊂ 𝜋�̅�𝛼) → (2) 

from eqation(1) and (2) 

𝐴̅ = 𝜋𝐴̅
𝛼 

Remark: 

              SΩ  and S   are normal  space  its product SΩ and S  is not  

          Normal   Action: 

            Let x be a space. let G be a topological group an action of G on X is a continuous map𝛼 ∶ 𝐺 ×

𝑋 → 𝑋such that denoting 𝛼(𝑔 × 𝑥) 𝑏𝑦                           g.x one has  

i) e.x = ∀ 𝑥 ∈ 𝑋 

ii) 𝑔1(𝑔2.x ) = (𝑔1.𝑔2)x ∀ 𝑥 ∈ 𝑋 and  𝑔1,𝑔2 ∈ 𝐺. 

Orbit space: 

                      Define x ̴g ·x Ɐx  and g, The resulting quotional space is defined by  x⁄g and called the orbit 

space  of  the  action x. 

Theorem: 

                     Every regular space with a countable map basic is normal. 

Proof: 

Let X be a regular space with a countable basic B.Let A and B be disjoint closed subset of x. 

 

Since x is regular each point x of A has a neighbourhood U not intersecting B. 

Using lemma-1 

Choose a neighbourhood v of x such that�̅� ∈ 𝑈 choose an elt  of  B containing  x and contained in v. 

By choosing such  a basic  elt  for each  each  x in A. 

We contruct a countable covering of A by open sets whose  closure doesn′t  interest  B.  

Since  thus  covering  of  A  is  countable  we  can  index  it  with  the positive integers. 

(say) let it  be  {𝑈𝑛} 

Similarly choose a countable collection {𝑈𝑛} of open sets covering B such that each �̅�𝑛 is disjoint from 

A. 

The sets U=𝑈𝑢𝑛and V=𝑈𝑉𝑛 are open sets containing A and B respectively. 
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But they need not be disjoint. 

Now, we prove  

            U and V are disjoint as in the following manner 

Given n, define 𝑈𝑛′ = 𝑈𝑛- 

 

Clearly, each   is open because it is a difference of an open set   and a closed set 

Similarly each open. 

This collection {} cover A, because each xєA belongs to   for some n and x belongs to name of the sets   . 

Similarly , the collection      cover B. 

Now, the open sets  and  are disjoint, 

For,ifx∈ 𝑢′ ∩ 𝑣′then x∈ 𝑢𝑗 ′∩ 𝑣𝑘′for j and k. 

Suppose that j ≤ k 

     It follows from the define of 𝑢𝑗that x∈ 𝑈𝑗and  

Since j ≤ k 

It follows from the define of𝑣𝑗 that x∉ 𝑈𝑗. 

⟹⟸ Arises if j∈ 𝑘  

Theorem: 

                   Every metrizable space is normal. 

Proof: 

                  Let x be a metrizable space with metric d. 

Let A and B are disjoint closed subsets of x. 

For each aєA choose єa so that the ball B(a, єa) doesn′t interest B. 

Similarly, for each bєB choose єb so thatB(b, єb) doesn′t interest A. 

Define  U=      B(a, єa/2) and v=       B(b, єb/2) 

Then U and V are open sets containing A and B respectively. 
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Now, we′ve to prove: 

U and V are disjoint. 

For zє UꓵV then zєB(a, єa/2)ꓵB(b, єb/2) for some aєA and  bєB. 

Then, by triangle inequality 

d(a, b) ≤ d(a, z) + d(z, b) 

                                       ≤ є/2 + є/2 

                                      = єa + єb/2 

If єa ≤ єb then d(a, b)<єb then B(b, єb) contains the points a, 

If єb ≤ єa then d(a, b) <єa then B(a, єa) contains the points b. 

Neither situation is possible 

Since a and b are disjoint 

Hence U and V are disjoint 

 .x is normal ؞

Theorem: 

                   Every compact hausdroff space is normal. 

Proof: 

                  Let x be a compact hausdroff space, 

Wkt, x is regular. 

For if x is a point of x and B is closed set in x not containing x then B is compact. 

( closed subset of a compact space is compact) 

Ie) B is compact subsets of a hausdroff space x. 

Then    disjoint open sets containing x and B respectively. 

To prove: x is normal. 

By lemma (unit-4 , lemma-8) 

For given disjoint closed sets A and B in x 
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Choose for each point a of A, disjoint open set 𝑈𝑎 and 𝑉𝑎 containing a and B respectively. 

       The collection {𝑈𝑎} covers A because A is compact. 

Also, A may be covered by finitely many 𝑈𝑎1,…….,𝑈𝑎𝑚 

Then U=𝑢𝑎1ꓴ……..U𝑢𝑎𝑚   and V=𝑣𝑎1ꓵ………..ꓵ𝑣𝑎𝑚 are disjoint open sets containing A and B 

respectively. 

TUBE LEMMA: 

STATEMENT: 

 Consider the product space x y where Y be a compact  

               Let x˳ ∈ 𝑦 

If N be an open set of XxY containing the slice in XxY, then there exists a tube in XxYcointaining this 

slice and contained in N. 

SUMMARY 

 The tube lemma is useful to prove that the finite product of compact spaces is compact.  

QUESTIONS 

1. Define  Compact Space. Give an example 

 

2. Define limit point compact. 

 

 

3. State and prove the extreme value theorem.  

 

4. Show that every closed subspace of a compact space is compact. 

 

 

5. State and prove Uniform continuity theorem.  

 

6. Prove that every compact subspace of a Hausdroff space is closed. 

 

 

7. State and prove Tube lemma. 

 

8. Let X be a metrizable space prove that following are equivalent (a) X is compact (b) X is  limit 

point compact (c) X is sequentially compact. 
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UNIT V 

 

 

 

 

 

 

 

 

 

 

The 
separation 

axioms 

The Uryshon’s 
metrization 

theorem. 

The 
countability 

axioms 

The Urysohn’s 
lemma 
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Content 

o The countability axioms  

o The separation axioms  

o The Urysohn’s lemma  

o The Uryshon’smetrization theorem.  
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COUNTABILITY & SEPARATION AXIOMS 

 

(§) The Countability Axioms: 

Definition: Countablebasisatx:  

A spaceXis said to have a countable basis at𝒙 if there is a countable collection𝔹of 

neighborhoods of 𝑥 such that each neighborhood of 𝑥 contains at least one of the elements of 𝔹. 

Definition: Firstcountable: 

A space X that has a countable basis at each of its points is said to satisfy the first countability 

axiom, (or) to be first-countable. 

Theorem: 1 

Let X be a topological space. 

a) Let A be a subset of X. If there is a sequence of points of A converging to 𝑥, then𝑥 ∈ Ā; the 

converse holds if X is first-countable. 

b) Let 𝑓: 𝑋 → 𝑌. If f is continuous, then for every convergent sequence 𝑥𝑛 → 𝑥 in X, the sequence 

𝑓(𝑥𝑛) converges to 𝑓(𝑥). The converse holds ifX is firstcountable. 

Proof: 

The proof is a direct generalization of the proof. 

Write Lemma:21.2(The sequencelemma) &Theorem:21.3 with proof. 

(Lemma 21.2 (The sequence lemma): 

Let X be a topological space; let 𝐴 ⊂ 𝑋. If there is a sequence of points of A converging to x, then 

𝑥 ∈ 𝐴̅; the converse holds if X is metrizable. 

Theorem 21.3: 

Let 𝑓: 𝑋 →  𝑌. If the function 𝑓 is continuous, then for every convergent sequence 𝑥𝑛 → 𝑥 in X, 

the sequence 𝑓(𝑥𝑛) converges to 𝑓(𝑥). The converseholds if X is metrizable.) 

 

Definition: Secondcountable: 

If a space X has a countable basis for its topology, then X is said to satisfy the second 

countability axiom, (or) to be second-countable. 



Department of Mathematics, URCW Page 39 
 

Example: 

The real line ℝ are has a countable basis.The collection of all open intervals (a,b) with rational 

end points.Likewise,ℝ𝑛 has a countable basis.The collection of all products of intervals having rational 

end points. Evenℝ𝜔 has a countable basis.The collection of all products∏ 𝑈𝑛𝑛∈ℤ+
, where𝑈𝑛 is an open 

interval with rational end points for finitely many values of n, and𝑈𝑛 = ℝ for all other values of n. 

Remark: 

The second countability axiom⟹The first countability axiom 

Proof: 

For if 𝔹 is a countable basis for the topology of X, then the subset of𝔹 consisting of these basis 

element containing the pointx is a countable basis at X. 

Theorem:  

A subspace of a first countable space is first countable, and a countable product of first countable 

spaces is first countable. A subspace of a second countable space is second countable, and a countable 

product of second countable spaces is second countable. 

Proof: 

Write above remark. 

Consider the second countability axiom. 

If 𝔹 is a countable basis for X,  

then{𝐵 ∩ 𝐴 | 𝐵 ∈ 𝔹} is a countable basis for the subspaceAof X. 

If𝔹𝑖is a countable basis for the space𝑋𝑖, 

then the collection of all products ∏ 𝑈𝑖, where𝑈𝑖 ∈ 𝔹𝑖  for finitely many values of iand 

𝑈𝑖 = 𝑋𝑖forall other values ofi, is a countable basis for∏ 𝑋𝑖. 

The proof for the first countability axiom is similar. 

Definition: Dense: 

A subspace A of a space X is said to be dense in X if 𝐴̅ = 𝑋. 
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Theorem:  

Suppose that Xhas a countable basis. Then: 

a) Every open covering of Xcontains a countablesubcollectioncoveringX. 

b) There exists a countable subset ofXthat is dense in X. 

Proof: 

Given X has a countable basis. 

Let {𝐵𝑛}be a countable basis forX. 

a. Let 𝒜be an open covering of X. 

By definition of countable basis, 

For each positive integer 𝑛 ∈ 𝑍+,we can choose an element of 𝐴𝑛of 𝒜 containing the basis element𝐵𝑛. 

The collection 𝒜′ of the sets 𝐴𝑛 is countable, because it is index with a subset J of the positive integers. 

Also it covers X. 

For given a point 𝑥 ∈ 𝑋 we can choose an element A of 𝒜 containing x. 

Since A is open, there is a basis element 𝐵𝑛 

such that 𝑥 ∈ 𝐵𝑛 ⊂ 𝐴. 

Since 𝐵𝑛 lies in an element of 𝒜, the index n belongs to the set J. 

So 𝐴𝑛 is defined. 

Since 𝐴𝑛 ⊂ 𝐵𝑛, it contains x. 

Thus 𝒜′ is a countable subcollection of  𝒜 that covers X. 

 

b. From each non empty basis element 𝐵𝑛choose a point 𝑥𝑛. 

Let Dbe the set𝐷 = {𝑥𝑛| 𝑛 ∈  𝑍+}is dense in X. 

Because given a point x of X,every basis element containing x intersectsD, 

So X belongs to �̅�. 

Remark: 



Department of Mathematics, URCW Page 41 
 

The space having a countable dense subset is often said to be separable. 

Definition: Lindelöf space: 

A space for which every open covering contains a countable subcovering is called aLindelöf 

space. 

 

The Separation Axioms: 

Definition:Regular: 

Suppose that one-point sets are closed in X. Then X is said to be regular if for each pair 

consisting of a pointxand a closed set B disjoint from x, there exist disjoint open sets containing x and 

B,respectively. 

Definition:Normal: 

The space X is said to be normal if for each pair A,B of disjoint closed sets ofX, there exist 

disjoint open sets containingAand B,respectively. 
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Result: 

Every regular space is Hausdroff and every normal space is regular. 

Normal ⟹ Regular ⟹ Hausdroff. 

Lemma:  

Let Xbe a topological space. Let one-point sets in Xbe closed. 

a) Xis regular if and only if given a point x of X and a neighborhood U of x, there is a 

neighborhoodVof x such that �̅� ⊂ 𝑈. 

b) X is normal if and only if given a closed set A and an open set UcontainingA, there is an open 

set V containingAsuch that �̅� ⊂ 𝑈. 

Proof: 

a) Let Xbe regular. 

Suppose that the point xand the neighborhood U of x are given. 
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Let 𝐵 = 𝑋 − 𝑈 ; then B is closed set, since X is regular there exist disjoint open sets U and W 

containingxand B, respectively. 

The set �̅� is disjoint from B,because if 𝑦 ∈ 𝐵,then the set W is a neighborhood of y disjoint from V. 

Therefore, �̅� ⊂ 𝑈. 

Conversely,Suppose that the point x and the closed set B not containing x are given. 

Let 𝑈 =  𝑋 − 𝐵. 

By hypothesis, there is a neighborhood V of x such that �̅� ⊂ 𝑈. 

Then the open sets V and 𝑋 − �̅� are disjoint open sets consisting x and B respectively. 

Then X is regular. 

 

b) Replace the point x by the set A through out proof of (b) follows. 

 

 

 

 

PROOF: 
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Consider the vertical space slice X₀xY 

{ It is a homomorphism to Y 

Y is compact }⇒X₀xY is compact 

GIVEN, 

     N is open in X×Y 

X₀xY∁N 

⇒X₀Xy ∈ X₀xY ∀ y∈Y 

⇒X₀xY∈ 𝑁∀y∈Y 

{ N is open In XxY 

X₀×Y∈N} ⇒ then Э a basic element UxV 

∋∶X₀xY∈UxV∁N 

Where U is open in X 

V  is open in Y 

.·. The collection {UxY/U open in X  

            V is open in Y 

UxV∁N } is an open cover for X₀xY 

But X₀xY is compact 

.·. Such that a finite subcollectionU₁xV₁,U₂xV₂……..UnxVn 

∋:X₀xY ∁(U₁xV₁)∪·········∪(UnxVn) 

 Let N =U₁∩U₂∩·········Un 

Each Uᵢ (i=1,2········n) is open in X 

⇒ W is open in X 

   X₀∈Uᵢ  (i= 1,2······n) 

⇒ X₀∈W 

TO PROVE: 
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WxY∁N 

    Let (x,y)∈WxY 

⇒X∈W, y∈Y 

   X∈W ⇒ X∈U₁∩U₂∩·······∩Un 

⇒ X∈Uᵢ     ∀ i=1,2······n 

 Y∈Y ⇒X₀∈Y∈X₀xY∁(U₁xV₁)∪····∪(UnxVn) 

⇒X₀∈Y∈(U₁xV₁)∪·····∪(UnxVn) 

⇒X₀xY∈ UᵢxVᵢ for some i 

⇒y∈Vᵢ for some i 

∴( x,y) ∈ UᵢxVᵢ        [.·.UᵢxVᵢ∁W] 

⇒(x,y) ∈N 

∴WxY∁N 

Theorem: 

The product finitely many product space is compact 

PROOF: 

        First we prove that the product by two compact space is compact. 

        Let X,Y be two compact space  

TO PROVE: 

XxY is compact 

   Let {Aₐ}α∈j be an open cover for XxY 

                Let X₀∈X   

consider the slice X₀xY 

{X₀xY is homomorphism to Y 

And Y is compact} ⇒X₀xY is compact  subset of XxY 

Since {Aα} is an open cover for XxY 



Department of Mathematics, URCW Page 46 
 

⇒ {Aα} is a cover for X₀xY by sets open in XxY 

[By lemma] 

.·. Э a finite subcollection Aα₁,Aα₂······Aαn 

∋: X₀xY ∁ Aα₁∪Aα₂∪…….∪Aαn 

  Let N=Aα₁∪Aα₂∪….∪Aαn 

Each Aαᵢ is open in XxY⇒ N is open in XxY 

X₀xY∁Aα₁∪Aα₂∪·······∪Aαn=N 

⇒X₀xY∁N 

By tube lemma, 

.·.Such that a neighbourhood say X₀ in X ∋: W×Y∁N 

⇒WxY∁Aα₁∪Aα₂∪······∪Aαn 

CONCLUSION: 

     Thus for each x∈X 

We can find an open set Wₓ in X 

∋: (i) X∈Wₓ 

    (ii) WₓxY can be cover by finite number of members of {Aα}  

 .·. The collection {Wₓ/x∈X} is an open cover for X .But X is compact 

.·. Such that a finite subcollectionWx₁……Wxn 

∋: Wx₁∪Wx₂∪….....UWxm=X 

⇒ (Wx₁∪Wx₂∪….∪Wxm) XY=XxY 

⇒ (Wx₁ XY)∪…….∪(WxmXY)=XxY 

.·. Each WₓᵢxY (i=1,2….W) can be covered by finite number of member of {Aα} 

 .·. (Wx₁XY)∪(Wx₂XY)∪…..∪(Wx XY)=XxY can be covered by finite number of {Aα} 

 .·. XxY is compact  

{If X is compact  



Department of Mathematics, URCW Page 47 
 

 Y is compact} ⇒XxY is compact  

{If X₁xX₂x……xXn is compact 

Xn is compact}  ⇒ (X₁xX₂x…xXₙ₋₁)xXn is compact 

But X₁xX₂x…..xXn is homomorphic to X₁xX₂x…xXn is compact 

.·. By Induction 

If X₁,X₂…….Xn are compact space then X₁xX₂x…….xXn is compact. 

FINITE INTERSECTION CONDITION : 

A  collection ζ of subset of X is said to satisfy the finite Intersection  condition. If for every finite 

subcollection{ C₁,C₂……Cn} of ζ 

 The Intersection C₁∩∩C₂∩…..∩Cn=φ 

Let X be a topological space then X is compact ⇒ for every collection ς are closed set in X satisfy 

the finite Intersection condition ∩c∈ς C =φ 

PROOF: 

       Let X be compact 

       Let ς be collection of closed set in X satisfying the finite Intersection condition.  

TO PROVE: 

⋂ 𝑪 ≠ 𝜱 

𝒄𝝐𝜻 

 

Suppose, 

⋂ 𝐶 ≠ 𝛷

𝐶𝜖𝜁

 

⟹ (⋂ 𝐶)ʿ ≠𝐶𝜖𝜁 Φʿ 

⟹⋃ 𝐶ʿ = 𝑋𝐶𝜖𝜁  

⟹  each 

The collection { X-C/Cϵζ} is an open cover for X But X is compact. 

∴∋an finite subcollection X-C₁,X-C₂……X-Cn 
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∋:⋃ (𝑥ⁿ
𝑖=1 − 𝑐ᵢ ) =  X 

⟹(⋃ (ⁿ
𝑖=1  X-Cᵢ))ᶜ =Xᶜ 

⟹⋂ 𝑐ᵢ = ∅ⁿ
𝑖=1  

Which is a contradiction  ( Since ζ satisfy the Finite Intersection collection)  

∴ ⋂ 𝐶

𝑐 ∈𝜁

≠ ∅ 

Conversly, 

      Assume that ζ be a collection of closed set in X satisfying the Finite Intersection collection 

⋂ 𝐶𝑐∈𝜁 ≠φ 

TO PROVE: 

        X is compact  

   Let A be an open cover of X 

TO PROVE: 

   A has the finite subcover 

Suppose, 

  A has no finite subcover 

(i.e)  A₁∪A₂∪………∪An=X 

For any finite subcollection from A 

       (A₁∪A₂∪………∪An)ᶜ≠Xᶜ 

⟹A₁ᶜ ∩ 𝐴2ᶜ ∩ … … ∩ 𝐴𝑛ᶜ ≠ ∅ 

⟹⋂ 𝐴ᵢᶜ ≠ ∅ⁿ
𝑖=1  

⟹⋂ (𝑋 − 𝐴ᵢ) ≠ ∅ⁿ
𝑖=1  

∴The collection of {X -A/A∁A} of closed set satisfying the finite Intersection collection 

By hypothesis, 



Department of Mathematics, URCW Page 49 
 

⋂(𝑋 − 𝐴) ≠ ∅

ⁿ

𝑖=1

 

               (⋂ (𝑋 − 𝐴))ᶜ𝐴∈𝐴 ≠ ∅ 

⋃ 𝐴 ≠

𝐴 ∈𝐴

𝑋    {  𝐴𝑖𝑠 𝑎𝑛 𝑜𝑝𝑒𝑛 𝑐𝑜𝑣𝑒𝑟 𝑓𝑜𝑟 𝑥} 

⇒⇐ 

Suppose ∋ a finite subcollection from 𝜁 covering X  

                      Hence X is compact. 

 

SUMMARY 

 

 Countable sets form the foundation of a branch of mathematics called discrete Mathematics  

 The separation axioms are axioms only in the sense that, when defining the notion of topological 

paces one could add these conditions as extra axioms to get a more restricted notion of what a 

topological space is.  

 Topology is also used in string theory in physics, and for describing the space-time structure of   

universe. 

 

 

QUESTIONS 

 

1. Define limit point compact. 

2. Define Metrizable Space. 

3. Define Quotient topology. 

4. Define linear continum. 

5. Define Path connected 

6. Show that every closed subspace of a compact space is compact. 

7. Let A be a connected subspace of X .If A⊆ B⊆𝐴̅, then B is also connected. 

8. A space X is locally connected iff for every open set U of X, each component of U is open  

in X. 

9. The components of X are connected disjoint subset of X, whose union is X such that each  

connected subsets of X intersecting only one of them. 

10. State and Prove Intermediate value theorem. 
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11. The topologies on Rn induced by the Euclidean metric d and the square metric R are the same as 

the product topology on Rn. That is Rnis Metrizable. 

12. State and prove sequence lemma. 

13. State and prove the extreme value theorem. 

 

14. State and prove Urysohn lemma. 

15. Let X be a metrizable space prove that following are equivalent (a) X is compact(b) X is  limit     

point compact (c) X is sequentially compact. 

16. The finite cartesian product of a connected space is connected. 

17. If L is a linear continum in the order topology then L is connected and so are intervals and rays in  

L. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


